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Abstract
This paper proposes a novel approach for Asset–Liability Manage-

ment (ALM) by employing continuous-time Reinforcement Learn-

ing (RL) with a linear-quadratic (LQ) formulation that incorporates

both interim and terminal objectives. We develop a model-free, pol-

icy gradient-based soft actor-critic algorithm tailored to ALM for

dynamically synchronizing assets and liabilities. To ensure an ef-

fective balance between exploration and exploitation with minimal

tuning, we introduce adaptive exploration for the actor and sched-

uled exploration for the critic. Our empirical study evaluates this

approach against two enhanced traditional financial strategies, a

model-based continuous-time RL method, and three state-of-the-art

RL algorithms. Evaluated across 200 randomized market scenarios,

our method achieves higher average rewards than all alternative

strategies, with rapid initial gains and sustained superior perfor-

mance. The outperformance stems not from complex neural net-

works or improved parameter estimation, but from directly learning

the optimal ALM strategy without learning the environment.

Keywords
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1 Introduction
Asset-Liability Management (ALM) [36] is a critical component of

financial strategy, involving the careful coordination of assets and

liabilities to ensure the financial health of institutions. It plays a

crucial role for banks, insurance companies, and pension funds,

where the alignment of assets against liabilities significantly affects

financial stability and regulatory compliance.

Traditionally, ALM has utilized a range of methods to effectively

synchronize assets and liabilities: static approaches like cash flow

matching [39] ensure liabilities are met with corresponding asset in-

flows, and passive value-driven strategies such as key rate duration

matching [10] mitigate interest rate fluctuations by aligning the

durations of assets and liabilities. On the other hand, more dynamic

techniques, such as contingent immunization [18, 19] and Constant

Proportion Portfolio Insurance (CPPI) [4, 9], actively adjust asset

allocation to maintain a target surplus or minimize deviation from

a predefined target. Maintaining a target surplus is essential for bal-

ancing solvency and efficient capital use, helping to mitigate both

the risk of insolvency from insufficient surplus and the inefficiency

of excess capital. However, these traditional methods often assume

a stable environment with complete information, which limits their

adaptability in fast-changing market conditions.

Reinforcement learning (RL) offers notable advantages in ALM

by dynamically adjusting policies based on real-time feedback, mak-

ing it a powerful tool for decision-making in dynamic and uncer-

tain environments. Despite its potential, most RL methods have

been developed around discrete-time Markov decision processes

(MDPs) with discrete state and action spaces. While effective in

many domains, this discrete-time framework faces inherent limita-

tions when applied to systems that naturally evolve in continuous

time, such as financial markets. Bridging this gap requires discretiz-

ing continuous-time problems into discrete-time models, enabling

the use of standard RL algorithms. However, this discretization

introduces critical challenges. Selecting an appropriate time step

size is particularly challenging: large time steps can oversimplify

the problem, reducing resolution and yielding suboptimal policies,

while small time steps, despite their precision, increase the compu-

tational burden and may result in instability [23, 25, 33]. Addition-

ally, discretization often struggles to accurately capture complex,

fine-grained dynamics in continuous environments, especially in

high-frequency decision-making contexts. This mismatch between

discrete-time models and continuous-time dynamics limits the ef-

fectiveness of traditional RL methods in such settings, underscoring

the need for continuous-time RL frameworks that can better handle

the inherent complexities of financial markets.

Recent advancements in continuous-time RL have marked a

pivotal shift from earlier isolated studies [2, 7, 35] to a more cohe-

sive and systematic framework. The introduction of an entropy-

regularized control approach by [37] laid a rigorous mathematical

foundation for this field. Building on this, subsequent research

[16, 17] developed comprehensive methods for policy evaluation

and improvement. A key aspect of this research is its model-free,

data-driven approach, which focuses on directly learning optimal

control policies without requiring explicit model estimation. This

progress has not only solidified the theoretical underpinnings of

continuous-time RL but also inspired diverse extensions and prac-

tical applications in domains requiring robust real-time decision-

making under uncertainty [12, 13, 34, 38].

While recent developments in continuous-time RL have made

significant theoretical progress, much of the existing work remains

primarily focused on analytical results rather than empirical val-

idation. To date, these methods have not been applied to ALM, a

setting that naturally fits the continuous-time framework due to

its dynamic and stochastic nature. Furthermore, empirical compar-

isons between continuous-time RL and traditional discrete-time

RL approaches in financial applications remain largely unexplored,

leaving open the question of their relative practical effectiveness.

Building upon these theoretical advancements, our work mainly

contributes in the following ways:
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• A linear-quadratic (LQ) formulation of the ALM problem is

introduced, incorporating both interim and terminal objec-

tives, and addressing the time-inconsistency and terminal

constraint issues in the traditional mean-variance (MV)

approach.

• We design a model-free, policy gradient-based (soft) actor–

critic algorithm tailored for the ALM problem within a

continuous-time RL framework. To the best of our knowl-

edge, this is the first work that applies continuous-time RL

to ALM.

• We introduce an adaptive exploration mechanism for the

actor and a scheduled exploration strategy for the critic, en-

abling a robust exploration–exploitation trade-off through-

out learning.

• Empirical results demonstrate that our algorithm achieves

superior performance over traditional ALM strategies, model-

based continuous-time RL, and advanced RL baselines.

The remainder of the paper is organized as follows. Section 2

formulates the ALM problem and discusses preliminary results

essential for subsequent developments. Section 3 outlines our RL

algorithm’s development and principles. Section 4 proves the con-

vergence of the proposed algorithm. Section 5 evaluates our algo-

rithm against six ALM strategies and presents experimental results.

Finally, Section 6 concludes.

2 Description of the Asset-Liability
Management Problem

2.1 Classical Stochastic LQ Framework for ALM
One widely used approach to address the ALM problem is through

stochastic control, particularly using theMV formulation, as demon-

strated in several studies [11, 24, 30]. In this framework, the state

variable is typically defined as the surplus, representing the dif-

ference between assets and liabilities. The primary objective is to

minimize the expected squared deviation of the terminal surplus

from a predefined target surplus, subject to a terminal constraint.

While the MV formulation provides a well-structured frame-

work for ALM, it also presents several key limitations. First, MV-

based formulations suffer from an inherent time-inconsistency is-

sue, meaning that strategies deemed optimal at the outset may

become suboptimal as time progresses [43]. Second, addressing the

terminal constraint in MV formulations often requires additional

techniques, such as introducing Lagrange multipliers, which can

complicate the solution. Finally, by focusing exclusively on mini-

mizing the terminal surplus deviation, the MV approach overlooks

the importance of managing the surplus throughout the entire hori-

zon, which is crucial for ensuring financial stability and meeting

ongoing obligations.

To address these limitations, we formulate the ALM problem

as a specific stochastic LQ control problem, which is structurally

similar to the MV approach but introduces key differences. The

first distinction lies in the state representation: instead of directly

modeling the surplus, we define the state variable 𝑥 (𝑡) ∈ R as the

surplus deviation, representing the difference between the surplus

and the target surplus:

𝑥 (𝑡) = Assets(𝑡) − Liabilities(𝑡) − Target Surplus,

where a positive 𝑥 (𝑡) indicates a surplus above the target, implying

inefficient capital use, while a negative 𝑥 (𝑡) represents a shortfall,
increasing the risk of insolvency.

By modeling the deviation directly, this formulation simplifies

the ALM problem and provides a clearer objective aligned with

maintaining a stable surplus relative to a predefined target. It also al-

lows for more precise tracking of the financial position by explicitly

focusing on deviations rather than the raw surplus deviation.

The control variable 𝑢 (𝑡) ∈ R represents strategic financial deci-

sions, such as asset reallocation, funding adjustments, and liability

management, aimed at minimizing deviations from the target sur-

plus over time.

The dynamics of surplus deviation 𝑥 under the influence of

financial control 𝑢 follow the stochastic differential equation (SDE):

d𝑥𝑢 (𝑡) = (𝐴𝑥𝑢 (𝑡) + 𝐵𝑢 (𝑡))d𝑡 + (𝐶𝑥𝑢 (𝑡) + 𝐷𝑢 (𝑡))d𝑊 (𝑡), (1)

where 𝑥𝑢 (0) = 𝑥0 is the initial surplus deviation and𝑊 (𝑡) is stan-
dard Brownian motion, representing the stochastic nature of finan-

cial markets. The model parameters are interpreted as follows:

• 𝐴: Represents the internal drift, modeling the natural ten-

dency of the surplus deviation to increase or decrease over

time without intervention.

• 𝐵: Captures the direct impact of the control𝑢 on the surplus

deviation. A larger 𝐵 means control actions have a stronger

influence.

• 𝐶: Scales the impact of the current surplus deviation on

the volatility of the system. Higher values of 𝐶 amplify

how fluctuations in the surplus deviation contribute to

uncertainty in the dynamics.

• 𝐷 : Describes how control actions affect the variability of

the surplus deviation. Higher values of𝐷 imply that control

actions have a stronger impact on the uncertainty in the

system.

Our objective is to manage 𝑢 strategically to minimize devia-

tions from the target surplus, penalizing both positive and negative

deviations. Positive deviations imply surplus accumulation beyond

the target, which could result in inefficient capital use or reduced

financial efficiency. Negative deviations, on the other hand, indicate

a shortfall relative to the target, reducing the safety buffer against

financial uncertainties. We aim to optimize the expected value of

the quadratic objective functional that incorporates both interim

and terminal deviations:

max

𝑢
E

[∫ 𝑇

0

−1

2

𝑄𝑥𝑢 (𝑡)2d𝑡 − 1

2

𝐻𝑥𝑢 (𝑇 )2
]
, (2)

where 𝑄 ≥ 0 and 𝐻 ≥ 0 are coefficients that penalize deviations

from the target surplus over the time horizon [0,𝑇 ] and at the

terminal time 𝑇 , respectively.

Notably, unlike conventional formulations, we do not explicitly

penalize the control 𝑢 in the objective function. Instead, 𝑢 is im-

plicitly constrained through the dynamics given in (1). This type of

formulation has led to an active research area known as “indefinite

stochastic Linear Quadratic control” [5, 26].

Provided the model parameters 𝐴, 𝐵, 𝐶 , 𝐷 , 𝑄 , and 𝐻 are known,

the established stochastic control theory can solve this optimization

problem [41], producing an optimal value function and control
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policy:

𝑉𝐶𝐿 (𝑡, 𝑥) = −1

2

[
𝑄

Λ
+ (𝐻 − 𝑄

Λ
)𝑒Λ(𝑡−𝑇 )

]
𝑥2,

𝑢𝐶𝐿 (𝑡, 𝑥) = −𝐵 +𝐶𝐷
𝐷2

𝑥,

(3)

where Λ = 1

𝐷2
(𝐵2 + 2𝐵𝐶𝐷 − 2𝐴𝐷2).

2.2 Continuous-Time RL Framework for ALM
However, the complete and precise knowledge of parameters such

as 𝐴, 𝐵, 𝐶 , and 𝐷 in real-life ALM scenarios is often impractical,

necessitating the use of RL to manage uncertainties. RL addresses

these challenges by maintaining a balance between exploration and

exploitation, adapting dynamically to the unknown parameters of

the environment [31]. This is achieved through randomized control

processes, where controls 𝑢 are derived from a distribution 𝜋 =

{𝜋 (·, 𝑡) ∈ P(R) : 0 ≤ 𝑡 ≤ 𝑇 }, representing all probability density

functions over R. To encourage exploration, an entropy term is

integrated into the objective function, promoting stochastic policies.

This approach is conceptually related to soft-max approximations

and Boltzmann exploration strategies [8, 44].

By [37], under entropy-regularized RL for continuous-time con-

trolled diffusion processes, the dynamics of the ALM problem under

stochastic policy 𝜋 are given by:

d𝑥𝜋 (𝑡) = 𝑏 (𝑥𝜋 (𝑡), 𝜋 (·, 𝑡))d𝑡 + 𝜎 (𝑥𝜋 (𝑡), 𝜋 (·, 𝑡))d𝑊 (𝑡), (4)

where the drift 𝑏 and diffusion 𝜎 components are defined as:

𝑏 (𝑥, 𝜋) = 𝐴𝑥 + 𝐵
∫
R
𝑢𝜋 (𝑢)d𝑢,

𝜎 (𝑥, 𝜋) =

√︄∫
R
(𝐶𝑥 + 𝐷𝑢)2𝜋 (𝑢)d𝑢, (𝑥, 𝜋) ∈ R × P(R).

(5)

The entropy-regularized value function for stochastic policy 𝜋

is expressed as:

𝐽 (𝑡, 𝑥 ;𝜋) = E
[∫ 𝑇

𝑡

(
− 1

2

𝑄𝑥𝜋 (𝑠)2 + 𝛾𝑝 (𝑠)
)
d𝑠

− 1

2

𝐻𝑥𝜋 (𝑇 )2
���𝑥𝜋 (𝑡) = 𝑥 ], (6)

where 𝑝 (𝑡) = −
∫
R 𝜋 (𝑡,𝑢) log𝜋 (𝑡,𝑢)d𝑢 represents the entropy term,

and 𝛾 , known as the temperature parameter, is the weight on ex-

ploration.

The optimal value function and optimal randomized/stochastic

(feedback) policy are solved as follows:

𝑉 (𝑡, 𝑥) = −1

2

𝑘1 (𝑡)𝑥2 + 𝑘3 (𝑡),

𝜋 (𝑢 | 𝑡, 𝑥) = N
(
𝑢

��� − (𝐵 +𝐶𝐷)
𝐷2

𝑥,
𝛾

𝐷2𝑘1 (𝑡)

)
,

(7)

where 𝑘1 > 0 and 𝑘3 are certain functions of 𝑡 that can be deter-

mined completely by the model parameters.

It should be noted that the values of all model parameters are

unknown to the agent, meaning that the optimal solutions in (7) can-

not be directly applied. Moreover, we make no attempt to estimate

these parameters, as is typically done in model-based approaches.

Instead, we adopt a model-free approach that entirely avoids model

estimation. Despite the unknown parameters, this model provides

critical insights into the structural properties of the optimal solu-

tions, thereby reducing the complexity of function parameterization

and approximation in the learning process. This advantage will be

demonstrated in the next section.

3 A Continuous-Time RL Algorithm
This section presents a continuous-time RL algorithm specifically

designed for ALM. It covers critical aspects including function

parameterization, policy evaluation and improvement methods,

adaptive actor exploration, and scheduled critic exploration. Finally,

we provide discretized updating rules and pseudocode for our ALM-

RL algorithm.

3.1 Function Parameterization
While the direct application of the optimal solutions (7) from the

continuous-time RL framework is impractical due to unknown

model parameters, the structural insights guide our parameteri-

zation. Specifically, the optimal value function is quadratic in the

surplus deviation 𝑥 , and the mean of the optimal stochastic Gauss-

ian policy is linearly dependent on 𝑥 . Thus, we parameterize the

value function with parameters 𝜽 ∈ R𝑑 :

𝐽 (𝑡, 𝑥 ;𝜽 ) = −1

2

𝑘1 (𝑡 ;𝜽 )𝑥2 + 𝑘3 (𝑡 ;𝜽 ), (8)

where both functions 𝑘1 and 𝑘3 are continuous in 𝑡 and 𝜽 . And the

policy with 𝝓 = (𝜙1, 𝜙2 > 0)⊤, yielding a Gaussian distribution:

𝜋 (𝑢 | 𝑥 ; 𝝓) = N(𝑢 | 𝜙1𝑥, 𝜙2) . (9)

3.2 Policy Evaluation
Policy evaluation (PE) is a critical component in RL, focusing on

learning the value function associated with a given control policy.

Following the parameterization strategies outlined for the value

function and policy in (8) and (9), PE involves updating the parame-

ters 𝜽 to refine the function approximations of 𝑘1 (𝑡 ;𝜽 ) and 𝑘3 (𝑡 ;𝜽 ).
The Temporal Difference (TD) method proposed in [16] suggests

an offline learning setting for updating 𝜽 as follows:

𝜽𝑛+1 ← 𝜽𝑛 + 𝑎𝑛
∫ 𝑇

0

𝜕𝐽

𝜕𝜽
(𝑡, 𝑥𝑛 (𝑡);𝜽𝑛)

[
d𝐽 (𝑡, 𝑥𝑛 (𝑡);𝜽𝑛)

− 1

2

𝑄𝑥𝑛 (𝑡)2d𝑡 + 𝛾𝑝
(
𝑡, 𝝓𝑛

)
d𝑡

]
,

(10)

where 𝑎𝑛 denotes the learning rate, and the subscript 𝑛 indicates

the 𝑛-th episode throughout.

Furthermore, [14] theoretically proves that the convergence rate

of policy parameters 𝝓 is robust to the forms of 𝑘1 (𝑡 ;𝜽 ) and 𝑘3 (𝑡 ;𝜽 ),
enabling flexible adaptations across different complexities in ALM

modeling.

3.3 Policy Improvement
Policy improvement enhances the policy by iteratively updating the

policy parameters based on feedback from the environment, aiming

to increase expected performance. We adopt the continuous-time

policy gradient (PG) method from [17] for 𝜙1. Moreover, to ensure

stability when updating 𝜙1,𝑛 , we need to consider the effect of

diminishing exploration controlled by 𝜙2,𝑛 . As 𝜙2,𝑛 becomes small,



the term 𝜙−1

2,𝑛
appearing in

𝜕 log𝜋

𝜕𝜙1

can lead to numerical instability.

To address this, we multiply by 𝜙2,𝑛 during the update, effectively

neutralizing the inverse and stabilizing the learning process.

𝜙1,𝑛+1 ← 𝜙1,𝑛 + 𝑎𝑛𝑍1,𝑛 (𝑇 ), (11)

where 𝑎𝑛 is the learning rate and the term 𝑍1,𝑛 (𝑠) is defined as:

𝑍1,𝑛 (𝑠) =
∫ 𝑠

0

𝜕 log𝜋

𝜕𝜙1

(
𝑢𝑛 (𝑡) | 𝑥𝑛 (𝑡); 𝝓𝑛

) [
d𝐽 (𝑡, 𝑥𝑛 (𝑡);𝜽𝑛)

− 1

2

𝑄𝑥𝑛 (𝑡)2d𝑡 + 𝛾𝑝 (𝑡, 𝝓𝑛)d𝑡
]
𝜙2,𝑛 .

(12)

3.4 Adaptive Actor Exploration
The actor’s exploration level is governed by the variance of the

stochastic policy, represented by 𝜙2. In the approach proposed by

[14], 𝜙2,𝑛 follows a predetermined diminishing sequence, limiting

the adaptability of exploration to evolving data.

To improve the adaptability of actor exploration, we employ the

policy-gradient updating method from [15], which enables 𝜙2 to

be updated dynamically in response to observed data. For com-

putational efficiency in the stochastic approximation algorithm,

we reparametrize 𝜙2 as 𝜙−1

2
. By applying the chain rule, the de-

rivative of 𝜙−1

2
with respect to 𝜙2 simplifies to a time-invariant

factor, which can be ignored in the gradient update, streamlining

the computation. Consequently, we have

𝜙2,𝑛+1 ← 𝜙2,𝑛 − 𝑎𝑛𝑍2,𝑛 (𝑇 ), (13)

where 𝑎𝑛 is the learning rate, and 𝑍2,𝑛 (𝑠) is defined as follows:

𝑍2,𝑛 (𝑠) =
∫ 𝑠

0

{
𝜕 log𝜋

𝜕𝜙−1

2,𝑛

(
𝑢𝑛 (𝑡) | 𝑡, 𝑥𝑛 (𝑡); 𝝓𝑛

)
[
d𝐽 (𝑡, 𝑥𝑛 (𝑡);𝜽𝑛) −

1

2

𝑄𝑥𝑛 (𝑡)2d𝑡 + 𝛾𝑝
(
𝑡, 𝝓𝑛

)
d𝑡

]
+ 𝛾 𝜕𝑝

𝜕𝜙−1

2,𝑛

(
𝑡, 𝝓𝑛

)
d𝑡

}
.

(14)

3.5 Scheduled Critic Exploration
The temperature parameter 𝛾 plays a crucial role in RL by control-

ling the weight of the entropy-regularized term in the objective

function, as outlined in (6). This parameter governs the level of ex-

ploration by the critic, influencing how much variability is incorpo-

rated into policy evaluations. A high 𝛾 value promotes exploration

by emphasizing entropy, while a low𝛾 value focuses on exploitation,

which can lead to faster convergence but risks premature policy

stagnation.

Maintaining a balance between exploration and exploitation is

essential to ensure that the algorithm explores sufficiently during

the early stages while converging effectively in later stages. To

achieve this, 𝛾 needs to diminish over time, allowing the critic to

gradually shift its focus from exploration to exploitation. Instead of

using a fixed hyperparameter 𝛾 that requires extensive fine-tuning,

as commonly done in continuous-time RL [16, 17], we propose a

scheduled approach, where 𝛾 is defined as:

𝛾𝑛 =
𝑐𝛾

𝑏𝑛
, for 𝑛 = 0, 1, · · · (15)

where 𝑐𝛾 is a constant that determines the exploration level, while

𝑏𝑛 > 1 represents a monotone increasing sequence to infinity that

governs the exploration scheduling. This formulation ensures that𝛾

decreases systematically over time, providing a natural mechanism

to balance exploration and exploitation without manual tuning.

3.6 Discretization and Projections
In our continuous-time RL framework, both the theoretical devel-

opment and analysis are carried out entirely in continuous time.

Discretization is introduced only at the final stage, solely for numer-

ical implementation—specifically for approximating integrals and

computing the d𝐽 term. To this end, the time interval [0,𝑇 ] is di-
vided into uniform steps of length Δ𝑡 . This final-stage discretization
avoids the drawbacks of discretizing the problem at the outset (i.e.,

converting the continuous-time problem into a Markov Decision

Process), which is known to cause performance instability when

the timestep is small [23, 25, 33].

To ensure numerical stability during learning, we project the

parameters onto convex sets:

𝐾𝜽 =

{
𝜽 ∈ R𝑑 : |𝜽 | ≤ 𝑈𝜽

}
, 𝐾1 = {𝜙1 ∈ R : |𝜙1 | ≤ 𝑈1} ,

𝐾2 = {𝜙2 ∈ R : 𝜖 ≤ |𝜙2 | ≤ 𝑈2} ,

where𝑈𝜽 ,𝑈1, and𝑈2 are fixed, sufficiently large positive constants

that bound the parameter magnitudes. The constant 𝜖 > 0 repre-

sents the minimum exploration level to enforce non-degenerate

stochastic policies and can be chosen arbitrarily close to zero. In

practice, these bounds can be tuned to improve empirical perfor-

mance while preserving theoretical stability.

Finally, for convex set 𝐾 , we define Π𝐾 (𝑥) := arg min𝑦∈𝐾 |𝑦 −
𝑥 |2. By employing a scheduled temperature 𝛾𝑛 and applying Euler

discretization, the update rules for the parameters 𝜽𝑛 , 𝜙1,𝑛 , and

𝜙2,𝑛 in (10), (11), and (13) are derived as follows:

𝜽𝑛+1 ← Π𝐾𝜽

(
𝜽𝑛 + 𝑎𝑛

⌊
𝑇
Δ𝑡 −1

⌋∑︁
𝑘=0

𝜕𝐽

𝜕𝜽
(𝑡𝑘 , 𝑥𝑛 (𝑡𝑘 );𝜽𝑛)

[
−1

2

𝑄𝑥𝑛 (𝑡𝑘 )2Δ𝑡

+ 𝛾𝑛𝑝
(
𝑡𝑘 , 𝝓𝑛

)
Δ𝑡 + 𝐽 (𝑡𝑘+1, 𝑥𝑛 (𝑡𝑘+1);𝜽𝑛) − 𝐽 (𝑡𝑘 , 𝑥𝑛 (𝑡𝑘 );𝜽𝑛)

] )
,

(16)

𝜙1,𝑛+1 ← Π𝐾1

(
𝜙1,𝑛 + 𝑎𝑛𝜙2,𝑛

⌊
𝑇
Δ𝑡 −1

⌋∑︁
𝑘=0

{
𝜕 log𝜋

𝜕𝜙1

(
𝑢𝑛 (𝑡𝑘 ) | 𝑡𝑘 , 𝑥𝑛 (𝑡𝑘 ); 𝝓𝑛

)
[
𝐽 (𝑡𝑘+1, 𝑥𝑛 (𝑡𝑘+1);𝜽𝑛) − 𝐽 (𝑡𝑘 , 𝑥𝑛 (𝑡𝑘 );𝜽𝑛) −

1

2

𝑄𝑥𝑛 (𝑡𝑘 )2Δ𝑡

+ 𝛾𝑛𝑝
(
𝑡𝑘 , 𝝓𝑛

)
Δ𝑡

]
+𝛾𝑛

𝜕𝑝

𝜕𝜙1

(
𝑡𝑘 , 𝝓𝑛

)
Δ𝑡

})
,

(17)
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𝜙2,𝑛+1 ← Π𝐾2

(
𝜙2,𝑛 − 𝑎𝑛

⌊
𝑇
Δ𝑡 −1

⌋∑︁
𝑘=0

{
𝜕 log𝜋

𝜕𝜙−1

2

(
𝑢𝑛 (𝑡𝑘 ) | 𝑡𝑘 , 𝑥𝑛 (𝑡𝑘 ); 𝝓𝑛

)
[
𝐽 (𝑡𝑘+1, 𝑥𝑛 (𝑡𝑘+1);𝜽𝑛) − 𝐽 (𝑡𝑘 , 𝑥𝑛 (𝑡𝑘 );𝜽𝑛) −

1

2

𝑄𝑥𝑛 (𝑡𝑘 )2Δ𝑡

+ 𝛾𝑛𝑝
(
𝑡𝑘 , 𝝓𝑛

)
Δ𝑡

]
+𝛾𝑛

𝜕𝑝

𝜕𝜙−1

2

(
𝑡𝑘 , 𝝓𝑛

)
Δ𝑡

})
.

(18)

3.7 Pseudocode
Based on the analytical development presented, we outline the RL

algorithm for the ALM problem as follows:

Algorithm 1 ALM-RL Algorithm

for 𝑛 = 1 to 𝑁 do
Set 𝑘 = 0, 𝑡 = 𝑡𝑘 = 0, 𝑥𝑛 (𝑡𝑘 ) = 𝑥0

while 𝑡 < 𝑇 do
Sample action 𝑢𝑛 (𝑡𝑘 ) following stochastic policy (9)

Update next surplus deviation 𝑥𝑛 (𝑡𝑘+1) using (1)

Increment time: 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡
end while
Collect trajectory {(𝑡𝑘 , 𝑥𝑛 (𝑡𝑘 ), 𝑢𝑛 (𝑡𝑘 ))}𝑘≥0

Update 𝜽 and 𝜙1 via (16) and (17)

Perform adaptive actor exploration using (18)

Apply scheduled critic exploration via (15)

end for

4 Convergence Results
In this section, we present the convergence analysis for Algorithm 1.

Throughout, we use 𝑐 , and its variants, to denote generic positive

constants that may vary from line to line. These constants depend

only on the model parameters𝐴, 𝐵,𝐶 , 𝐷 ,𝑄 , 𝐻 , the initial condition

𝑥0, time horizon𝑇 , and the predefined algorithmic hyperparameters

𝑐𝛾 ,𝑈𝜽 ,𝑈1,𝑈2, and 𝜖 .

Theorem 1. Suppose the learning rate sequence {𝑎𝑛} satisfies the
standard conditions:∑︁

𝑎𝑛 = ∞,
∑︁

𝑎2

𝑛 < ∞. (19)

Then, the following almost surely convergence holds:

𝜙1,𝑛
a.s.−−→ 𝜙∗

1
= −𝐵 +𝐶𝐷

𝐷2
,

and
𝜙2,𝑛

a.s.−−→ 𝜖.

Remark 1. 𝜙∗
1
represents the oracle value, corresponding to the

explicit solution under the assumption of complete market knowledge;
see Equations (3) and (7) for the optimal value 𝜙∗

1
= −𝐵+𝐶𝐷

𝐷2
.

Proof. The proof strategy builds on the framework established

in [14, Theorem 4.1] and [15, Theorem 5.1], with necessary adapta-

tions to the current Algorithm 1 under ALM setting. It also leverages

classical results from stochastic approximation theory [1, 27, 28].

Firstly, we denote the mean part ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) = E[𝑍1,𝑛 (𝑇 ) |
𝜽𝑛, 𝝓𝑛] and noise part 𝜉1,𝑛 = 𝑍1,𝑛 (𝑇 ) − ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛), so that

the updating rule for 𝜙1 is

𝜙1,𝑛+1 = Π𝐾1,𝑛+1 (𝜙1,𝑛 + 𝑎𝑛 [ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) + 𝜉1,𝑛]) . (20)

Applying Ito’s lemma to the process 𝐽 (𝑡, 𝑥𝑛 (𝑡);𝜽𝑛) then to 𝑍1,𝑛 ,

we have

d𝑍1,𝑛 (𝑡) = (𝑢𝑛 (𝑡) − 𝜙1,𝑛𝑥𝑛 (𝑡))𝑥𝑛 (𝑡)
{[
−1

2

𝑘′
1
(𝑡 ;𝜽𝑛)𝑥𝑛 (𝑡)2

+ 𝑘′
3
(𝑡 ;𝜽𝑛) − (𝐴𝑥𝑛 (𝑡) + 𝐵𝑢𝑛 (𝑡))𝑘1 (𝑡 ;𝜽𝑛)𝑥𝑛 (𝑡) −

1

2

𝑄𝑥𝑛 (𝑡)2

− (𝐶𝑥𝑛 (𝑡) + 𝐷𝑢𝑛 (𝑡))
2

2

𝑘1 (𝑡 ;𝜽𝑛) +
𝛾

2

log(2𝜋𝑒𝜙2,𝑛)
]
d𝑡

−
(
(𝐶𝑥𝑛 (𝑡) + 𝐷𝑢𝑛 (𝑡))𝑘1 (𝑡 ;𝜽𝑛)𝑥𝑛 (𝑡)

)
d𝑊𝑛 (𝑡)

}
.

(21)

Then by [14, Lemma B.1], we can get the noise bound

Var

(
𝜉1,𝑛

���𝜽𝑛, 𝜙1,𝑛, 𝜙2,𝑛

)
≤𝑐′

(
1 + |𝜙1,𝑛 |8 + (log𝜙2,𝑛)8

)
exp {𝑐′ |𝜙1,𝑛 |6}

≤𝑐′
(
1 +𝑈 8

1
+ (log𝑈2)8 + (log 𝜖)8

)
exp {𝑐′𝑈 6

1
} ≤ 𝑐,

(22)

and the mean part

ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) = −𝑙 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) (𝜙1,𝑛 − 𝜙∗1 ), (23)

where

𝑙 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) = 𝐷2𝜙2,𝑛

∫ 𝑇

0

𝑘1 (𝑡 ;𝜽𝑛)E[𝑥𝑛 (𝑡)2]d𝑡 . (24)

Moreover, we can further derive that 𝑙 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) ≥ 𝑐 > 0 and

|ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) | ≤ 𝑐′𝑈2 (1 +𝑈1)𝑒𝑐
′𝑈 2

1 ≤ 𝑐 .
Next, we let {G𝑛} be the filtration generated by {𝜽𝑚, 𝜙1,𝑚,

𝜙2,𝑚,𝑚 = 0, 1, 2, ..., 𝑛} and denote𝑈1,𝑛 = 𝜙1,𝑛 − 𝜙∗
1
. Then we have

E
[
|𝑈1,𝑛+1 |2

���G𝑛 ]
≤E

[
|𝑈1,𝑛 + 𝑎𝑛 [ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) + 𝜉1,𝑛] |2

���G𝑛 ]
≤|𝑈1,𝑛 |2 + 2𝑎𝑛𝑈1,𝑛ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛)+

+ 3𝑎2

𝑛

(
|ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) |2 + E

[��𝜉1,𝑛

��2 ���G𝑛 ] )
≤|𝑈1,𝑛 |2 + 2𝑎𝑛𝑈1,𝑛ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) + 𝑐𝑎2

𝑛 .

Following from [28, Theorem 1], we know that

��𝑈1,𝑛

��2
converges

to a finite limit and

∑−𝑎𝑛𝑈1,𝑛ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) < ∞ almost surely.

Then by (23), (24) and lower bound of 𝑙 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛),

−𝑎𝑛𝑈1,𝑛ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) = 2𝑎𝑛𝑙 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛)𝑈 2

1,𝑛 ≥ 2𝑐𝑎𝑛𝑈
2

1,𝑛 .

To prove 𝑈 2

1,𝑛
→ 0, we suppose 𝑈 2

1,𝑛
→ 𝑟 almost surely, where

0 < 𝑐 < ∞ is a constant. Then there exists an 𝑛0 and 0 < 𝛿 < 𝑟

such that𝑈 2

1,𝑛
≥ 𝑟 − 𝛿 > 0 for 𝑛 > 𝑛0. Thus, by the assumption of

this theorem, we have∑︁
−𝑎𝑛𝑈1,𝑛ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) ≥

∑︁
2𝑐𝑎𝑛𝑈

2

1,𝑛 ≥
∑︁

2𝑐𝑎𝑛 (𝑟−𝛿) = ∞,



which contradicts with

∑−𝑎𝑛𝑈1,𝑛ℎ1 (𝜙1,𝑛, 𝜙2,𝑛 ;𝜽𝑛) < ∞. There-
fore, 𝜙1,𝑛 converges to 𝜙∗

1
almost surely. The almost sure conver-

gence of 𝜙2,𝑛 to 𝜖 follows from a similar argument as 𝜙1,𝑛 . □

This proof is included for completeness and builds on [14, 15],

with key differences in the use of uniform bounds and a minimum

exploration level specific to ALM.

5 Numerical Experiments
This section details simulation experiments that compare our ALM-

RL algorithm against six alternative strategies. The comparisons in-

clude two enhanced traditional financial methods, one model-based

continuous-time RL strategy, and three established RL algorithms,

each described in the subsequent subsection.

5.1 Comparative ALM Strategies
5.1.1 Dynamic CPPI Strategy. To ensure comparability with our

ALM-RL algorithm and other RL methods, the Dynamic Constant

Proportion Portfolio Insurance (DCPPI) strategy incorporates an

adaptive multiplier, traditionally constant in CPPI [4, 9]. This adjust-

ment enhances the strategy’s ability to learn and adapt, overcoming

the traditional CPPI’s limitation where the performance is highly

dependent on the initially chosen multiplier𝑚.

DCPPI seeks to maintain zero deviation between the current

surplus and the target surplus by dynamically adjusting to changing

market conditions. The policy 𝑢 is defined as:

𝑢𝐷𝐶𝑃𝑃𝐼 (𝑡) = −𝑚 · 𝑥 (𝑡), (25)

where𝑚 is adaptively updated using a data-driven approach. Start-

ing from an initial value𝑚0, we simulate a trajectory of surplus

deviation 𝑥0, 𝑥1, ..., 𝑥𝑙 , and adjust𝑚 based on the directionality of

changes between consecutive surplus deviations:

𝑚𝑛+1 =𝑚𝑛 + 𝑎𝑛 · sgn
(
𝑙−1∑︁
𝑖=0

sgn(𝑥𝑖 · 𝑥𝑖+1)
)
, (26)

where 𝑎𝑛 is the learning rate and sgn(·) is the sign function. This

updating rule ensures that𝑚 is modified to correct the previous

trajectory’s trend by considering the sign consistency between

consecutive surplus deviations, enhancing the responsiveness and

accuracy of the strategy in aligning with market dynamics.

5.1.2 Adaptive Contingent Strategy. Drawing on the principles of

contingent immunization [18, 19], the Adaptive Contingent Strat-

egy (ACS) aims to maintain the surplus deviation within predefined

tolerance levels (𝛿), contrasting with the DCPPI’s zero-deviation

from the target. This conservative approach allows for minor fluc-

tuations within a safe boundary and opts for inaction when the

surplus deviation is adequately balanced, thereby avoiding unnec-

essary market exposure and reducing noise amplification from

market volatility. This is particularly useful given the stochastic na-

ture of financial movements, specifically the volatility component

𝐷𝑢 (𝑡)d𝑊 (𝑡) in the ALM dynamics (1).

The policy 𝑢 is formulated to be minimally interfered:

𝑢𝐴𝐶𝑆 (𝑡) = −𝑚 · sgn(𝑥 (𝑡)) ·max( |𝑥 (𝑡) | − 𝛿, 0), (27)

where the multiplier𝑚 dynamically updates similarly to (26).

5.1.3 Model-Based Plugin Strategy. The Model-Based Plugin Strat-

egy (MBP), derived from the continuous-time RL algorithm by

[3, 32], primarily estimates parameters 𝐴 and 𝐵 under assumptions

of constant volatility, and then plugs these estimates into analytical

solutions. This algorithm has been mathematically proven to offer

fast convergence. To align with the dynamic complexities of the

ALM problem, which involves state- and control-dependent volatili-

ties, this approach has been extended to also estimate parameters𝐶

and 𝐷 using least squares regression, as detailed in [14]. This exten-

sion provides a clear contrast to our model-free, continuous-time

RL approach.

5.1.4 Advanced RL Strategies. In our comparative analysis, we in-

clude three prominent RL algorithms—Soft Actor-Critic (SAC) [8],

Proximal Policy Optimization (PPO)[29], and Deep Deterministic

Policy Gradient (DDPG) [21]—due to their distinct characteristics

and relevance in advancing RL applications. SAC is selected for

its entropy-enhanced exploration technique which aligns with our

model’s entropy-based approach, emphasizing efficient exploration

in continuous action spaces. PPO is included as a state-of-the-art

representative for its ability to ensure stable and reliable policy

updates, which is crucial for consistent performance across diverse

market conditions. DDPG is chosen as a commonly referenced

benchmark in RL studies, known for its foundational role in inte-

grating deterministic policy gradient concepts with deep learning

frameworks.

5.2 Experiment Setup
To evaluate the performance of our method, we conduct simulations

designed to reflect realistic and uncertain ALM scenarios. While

most existing studies in the ALM literature [6, 20, 40, 42] evaluate

algorithms under fixed model parameters, we adopt a randomized

setup to better reflect the lack of prior knowledge in real-world

financial markets and to assess the algorithm’s robustness across

diverse environments. The parameter ranges are chosen based on

typical values used in these studies and general financial intuition:

𝐴 ∼ U(−0.05, 0.05), 𝐵 ∼ U(0.05, 0.15), and 𝐶, 𝐷 ∼ U(0.1, 0.2).
Each simulation runs for 20000 episodes with a discretization step

size of Δ𝑡 = 0.01, and is repeated independently 200 times to ensure

statistically reliable results.

Furthermore, the learning rate 𝑎𝑛 = (𝑛 + 1)−3/4
, shown to be

effective in [14], is used for ALM-RL as well as for the two enhanced

traditional ALM methods, DCPPI and ACS. This choice satisfies

the standard assumption in (19), which is also the only assumption

required in Theorem 1. For ALM-RL, the exploration scheduling

sequence 𝑏𝑛 = (𝑛 + 1)1/4 is additionally employed to accelerate

convergence, as demonstrated in [14], from which both 𝑎𝑛 and 𝑏𝑛
are adopted. The initial actor exploration level is set to 𝜙2,0 = 1,

and the constant 𝑐𝛾 = 1. The projection bounds are set to 𝑈𝜽 =

𝑈1 = 𝑈2 = 100, and the minimum exploration level is 𝜖 = 0.01. The

tolerance level for ACS is set as 𝛿 = 0.1. Finally, all other learnable

parameters across all ALM strategies are initialized using standard

normal distributions.

The settings for MBP follow those in [3, 14, 32]. For SAC, PPO,

and DDPG, the neural networks (NNs) used for both the actor and

critic are feedforward architectures with two hidden layers, each

containing 32 neurons and ReLU activation. Other hyperparameters
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are mostly adopted from [8, 21, 29]. Lastly, to ensure reproducibility

and fair comparisons under the randomized environment, we use

200 different random seeds to represent 200 independent market

scenarios. Each method is evaluated under the same set of seeds so

that all strategies face identical market conditions in each run.

5.3 Evaluation Metric
The average reward, a commonly used metric in RL to assess per-

formance, is employed to compare the effectiveness of our ALM-RL

algorithm with six alternative strategies. Following the value func-

tion (2), for each independent experiment, the reward is computed

as:

Reward =

⌊
𝑇
Δ𝑡 −1

⌋∑︁
𝑘=0

−1

2

𝑄 (𝑥𝑛 (𝑡𝑘 ))2 Δ𝑡 −
1

2

𝐻 (𝑥𝑛 (𝑇 ))2 , (28)

where 𝑥𝑛 (𝑡𝑘 ) represents the surplus deviation at time step 𝑡𝑘 .

For each method, the average reward per episode is computed as

themean of rewards from 200 independent experiments, resulting in

an average reward curve over 20,000 episodes. This curve provides a

reliable measure for comparing the methods’ performance, learning

dynamics, and overall effectiveness.

5.4 Performance Evaluation of ALM Strategies
Now we analyze the performance of ALM strategies in randomized

market conditions across 200 independent runs, as illustrated in

Figure 1.

Figure 1: Average reward under randomized market parame-
ters, smoothed with a 200-point moving average over 20000
episodes. Th shaded area indicates the interquartile range,
based on 200 independent simulations.

From Figure 1, we see that our proposed ALM-RL algorithm con-

sistently outperforms all other strategies across almost all episodes.

It exhibits rapid initial gains and sustained superiority throughout

the learning horizon, demonstrating notable resilience and adapt-

ability in refining its strategy more effectively than competing

methods. This strong performance is likely due to its use of entropy-

regularization exploration techniques and non-degenerate stochas-

tic policies, which enhance adaptability and decision-making under

uncertainty. Similarly, SAC, which also leverages entropy tech-

niques and stochastic policies, achieves rapid initial gains and main-

tains the second-best performance after 2500 episodes.

PPO, due to its conservative clipped surrogate objective, starts off

slower but gradually approaches SAC’s performance, albeit remain-

ing slightly lower. The clipping mechanism yields the smoothest

learning curve and the narrowest interquartile range (IQR) among

all strategies, reflecting high stability across runs. Compared with

SAC and PPO, DDPG exhibits moderate initial growth but ulti-

mately settles at a lower performance level. It also exhibits the

highest volatility and widest IQR, likely due to the sensitivity of

its deterministic policy gradient to noise and outliers. The MBP

strategy demonstrates rapid early growth and attains a relatively

high average reward in the initial stage. However, its performance

soon stagnates, converging to suboptimal solutions. This lack of

continued improvement is reflected in the flat reward curve and

is likely attributable to parameter estimation errors inherent in

financial markets [22]. Finally, DCPPI and ACS achieve one of the

lowest terminal rewards but maintain reliable, smooth performance

throughout. Moreover, DCPPI’s proactive control yields better out-

comes than the more conservative ACS, reinforcing the importance

of active management.

Moreover, in order to show statistical significance, we conduct

one-sided Wilcoxon paired tests between each pair of ALM strate-

gies, and the resulting matrix of 𝑝-values is presented in Figure 2.

Each cell displays the 𝑝-value for the null hypothesis that the row

method does not outperform the column method. Darker shades in-

dicate stronger statistical evidence against the null. Notably, ALM-

RL demonstrates statistically significant improvements over all

strategies except SAC at the 95% confidence level, and over SAC at

the 90% level, with corresponding 𝑝-values below 0.05 and 0.10, re-

spectively. This supports the robustness and consistent superiority

of ALM-RL across randomized environments.

Figure 2: Heatmap of 𝑝-values from one-sided Wilcoxon
paired tests comparing the terminal reward of each ALM
strategy. The terminal reward is calculated as the average
reward over the last 500 episodes to reduce the noise that
may result from using a single final episode.



6 Conclusions
This paper introduced a novel approach for ALM by formulat-

ing the problem as a stochastic LQ control and solving it within

a model-free, continuous-time RL framework. In addition to the

new formulation, we integrated adaptive exploration for the ac-

tor and scheduled exploration for the critic, ensuring an effective

exploration and exploitation trade-off. Notably, despite the use

of adaptive and scheduled exploration techniques, we are able to

prove almost sure convergence of all policy parameters. Our policy

gradient-based soft actor-critic method was evaluated against two

enhanced traditional financial strategies, a model-based continuous-

time RL approach, and state-of-the-art RL algorithms, including

SAC, PPO, and DDPG. The results consistently demonstrate that

our method outperforms these alternatives across diverse market

conditions.

The superior performance results from directly learning optimal

ALM strategies without assuming any knowledge of the financial

environment or estimating market parameters, highlighting a fun-

damental advantage of our approach. Future research will focus

on extending this framework to broader financial domains and

evaluating its performance in more complex and dynamic market

environments.
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