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Abstract
We consider time discretization for score-based
diffusion models to generate samples from a
learned reverse-time dynamic on a finite grid. Uni-
form and hand-crafted grids can be suboptimal
given a budget on the number of time steps. We
introduce Adaptive Reparameterized Time (ART)
that controls the clock speed of a reparameter-
ized time variable, leading to a time change and
uneven timesteps along the sampling trajectory
while preserving the terminal time. The objec-
tive is to minimize the aggregate error arising
from the discretized Euler scheme. We derive
a randomized control companion, ART-RL, and
formulate time change as a continuous-time rein-
forcement learning (RL) problem with Gaussian
policies. We then prove that solving ART-RL re-
covers the optimal ART schedule, which in turn
enables practical actor–critic updates to learn the
latter in a data-driven way. Empirically, based
on the official EDM pipeline, ART-RL improves
Fréchet Inception Distance on CIFAR-10 over a
wide range of budgets and transfers to AFHQv2,
FFHQ, and ImageNet without the need of retrain-
ing.

1. Introduction
Diffusion models (Ho et al., 2020; Song & Ermon, 2019;
Song et al., 2021b) are a family of generative models that
create samples from unknown target distributions based on
given samples. They have played a key role in the success
in text-to-image creators such as DALL·E 2 (Ramesh et al.,
2022) and Stable Diffusion (Rombach et al., 2022), in text-
to-video generators such as Sora (OpenAI, 2024), Make-
A-Video (Singer et al., 2023) and Veo (Google, 2024) and,
more recently, in diffusion large language models such as
Mercury (Khanna et al., 2025) and LLaDA (Nie et al., 2025).
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A diffusion model consists of two steps: learn the tar-
get score function by training on given samples (pretrain-
ing), and generate new samples from the learned model
(inference). The focus of this paper is on diffusion sam-
pling/inference, where it involves choosing timesteps or
time discretization of the learned model. Existing work
uses either uniform or hand-crafted timesteps (Song et al.,
2021a;b; Karras et al., 2022; Chen et al., 2023a), lacking
a principled framework to schedule timesteps. Here our
purpose is to provide a control-theoretic framework, which
allows strategic and systematic time discretization in dif-
fusion sampling in order to minimize the aggregate error
when applying the Euler scheme. The main contribution of
this paper is as follows:

• Methodology: We propose an optimal control frame-
work – Adaptive Reparameterized Time (ART), to
schedule timesteps for diffusion sampling. The idea is
to treat the speed of the diffusion sampler as control to
reparameterize time and adaptively redistribute compu-
tation along the sampling trajectory. To solve the ART
problem, we propose a continuous-time reinforcement
learning (CTRL) approach – ART-RL, premised upon
the recent development in Wang et al. (2020); Jia &
Zhou (2022a;b).

• Theory: We provide a rigorous theoretical analysis of
the CTRL formulation in the ART setting. We show
that the optimal ART control coincides with the mean
of the optimal randomized Gaussian policy in ART-RL,
establishing a precise link between ART and ART-
RL. Based on this connection, we derive actor—critic
update rules for learning adaptive time schedules.

• Experiments: Our ART-RL schedule consistently out-
performs uniform and EDM schedules (Karras et al.,
2022) within the official EDM pipeline. It improves
Fréchet Inception Distance (FID) across a broad range
of sampling time budgets on CIFAR-10, with particu-
larly strong gains at low budgets. Moreover, under the
scheduled timesteps for CIFAR-10, the improvement
transfers without retraining to other datasets such as
AFHQv2, FFHQ, and ImageNet.

To our best knowledge, this is the first paper that develops
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a principled approach to scheduling timesteps for gener-
ative diffusion sampling. The proposed ART-RL method
is purely data-driven, and shows robust performance and
generalizations empirically.

Relevant literature: Diffusion models as generative tools
were first proposed by Ho et al. (2020) (DDPM) and Song
et al. (2021a) (DDIM) in the discrete setting. The pioneering
work of Song et al. (2021b) introduces a continuous-time for-
mulation of diffusion models, providing a unified treatment
that encompasses earlier discrete-time models. Various sam-
pling methods have been proposed for diffusion inference,
including predictor-corrector sampler (Song et al., 2021b),
exponential integrator (Zhang & Chen, 2023), and higher-
order solvers (Zhang et al., 2023; Wu et al., 2024). See also
Lee et al. (2022); Chen et al. (2023a;b); Li et al. (2024);
Benton et al. (2024); Li & Yan (2024); Huang et al. (2025a)
for convergence analysis of diffusion models (with either
uniform or hand-crafted timesteps).

Continuous-time reinforcement learning (CTRL) was first
formulated by Wang et al. (2020), where exploration is
modeled via stochastic relaxed control to capture the trial-
and-error nature of reinforcement learning. Subsequent
work developed a model-free theoretical foundation via
martingale methods (Jia & Zhou, 2022a;b; 2023; Tang &
Zhou, 2024), established performance guarantees (Huang
et al., 2024; 2025b), and studied policy optimization (Zhao
et al., 2023). The CTRL framework has also been applied
to training and fine-tuning diffusion models in generative
AI (Gao et al., 2024; Zhao et al., 2024; 2025).

Organization: Section 2 reviews diffusion models and in-
troduces the ART control formulation. Section 3 describes
how CTRL is used to solve ART, leading to the ART-RL ap-
proach. Section 4 presents the ART-RL algorithm, followed
by empirical results in Section 5. Section 6 concludes. The
proofs and additional numerical results are placed in the
appendix.

2. Diffusion Models and ART
2.1. Continuous-Time Score-Based Diffusion Models

We briefly review continuous-time score-based diffusion
models; see Tang & Zhao (2025) for a recent survey. Given
samples from an unknown target distribution, a forward
process corrupts data over time τ ∈ [0, T ] toward a tractable
reference distribution, and sampling proceeds by integrating
a learned reverse-time process.

Diffusion sampling. A forward process obeys the Itô SDE

d x̄(τ) = − f
(
τ
)
x̄(τ) dτ + g(τ) dw(τ), (1)

where τ ∈ [0, T ], x̄(0) ∼ p0 is the target data distribu-
tion, w is a standard Wiener process in Rd, and f and g
are coefficient functions. Let pτ be the law of x̄(τ) and
S(τ, x) = ∇x log pτ (x) be the score.

For sampling, we use the probability flow ODE associated
with (1), which shares the same marginals as the reverse-
time SDE; see e.g. Tang & Zhao (2025, Theorem 5.1).
Denote the backward state by x̃(τ) := x̄(T − τ) with initial-
ization x̃(0) ∼ pT . Replacing S with a trained score model
Ŝ yields

dx̃(τ)

dτ
= f(T −τ)x̃(τ)+ 1

2g(T −τ)
2Ŝ(T −τ, x̃(τ)), (2)

where τ ∈ [0, T ].

Euler discretization. We integrate (2) on a grid 0 = τ0 <
τ1 < · · · < τK = T with step sizes hi = τi+1 − τi, and
write x̃i := x̃(τi). The explicit Euler update is

x̃i+1 = x̃i+hi

[
f(T − τi)x̃i + 1

2g(T − τi)
2Ŝ(T − τi, x̃i)

]
.

(3)

A uniform grid τi = iT/K is simple but allocates evalua-
tions uniformly even when the reverse dynamics vary along
the trajectory. A simple intuition is that early stages, where
samples resemble noise, may tolerate coarser steps, while
later stages will benefit from finer resolutions. Such con-
siderations motivate adaptive, data-driven schedules that
redistribute steps under a given, fixed total time budget T .

2.2. ART: Time Reparameterization via Control

Motivated by the drawback of uniform timesteps in back-
ward sampling discussed above, we introduce a reparam-
eterized sampling clock and formalize adaptive timestep
selection in the reverse process as a control problem. The
key idea is to replace the uniform progression of original
time by an adaptive, controlled progression that can accel-
erate in some segments and decelerate in others, thereby
redistributing computational effort along the trajectory.

To this end, let ψ : [0, T ] → R be a continuous time map-
ping from the new clock t to the original diffusion time τ
(i.e., τ = ψ(t)), with ψ(0) = 0 and ψ(T ) = T . On this
new clock we write the state as x(t) := x̃(ψ(t)), namely
the backward state evaluated at diffusion time ψ(t), with
x(0) ∼ pT . We define the control as θ(t) := ψ̇(t), which
quantifies the instantaneous rate of change in diffusion time
with respect to t and satisfies

∫ T
0
θ(t) dt = ψ(T )− ψ(0) =

T . To keep the formulation general, we do not impose
monotonicity of ψ, so θ may take either sign. The mono-
tone time-change case (equivalently, θ(t) ≥ 0 almost ev-
erywhere) is included as a special case of this formulation.
In particular, if we discretize the new clock uniformly as
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0 = t0 < t1 < · · · < tK = T , then the induced original-
time grid is τi := ψ(ti) with nonuniform step sizes τi+1−τi.
Intuitively, x(·) tracks the generative trajectory under the
reparameterized time, while θ(·) determines how quickly
the trajectory advances in original time per unit step on the
new clock (larger θ(t) corresponds to faster progression at t).
We refer to this time reparameterized sampling framework
as Adaptive Reparameterized Time (ART).

We next state the controlled dynamics induced by ART. By
the chain rule, with x(t) = x̃(ψ(t)), we have{

ẋ(t) = θ(t)F (x(t), ψ(t)), x(0) ∼ pT ,
ψ̇(t) = θ(t), ψ(0) = 0, ψ(T ) = T,

(4a)

(4b)

where the backward probability–flow vector evaluated at
original time T − ψ is

F (x, ψ) := f
(
T −ψ

)
x+

1

2
g
(
T −ψ

)2
Ŝ
(
T −ψ, x

)
. (5)

Recall the control θ(t) = ψ̇(t) is the local time–scaling
factor (time–warping rate) with respect to the new clock and
satisfies the total–time constraint∫ T

0

θ(t) dt = ψ(T )− ψ(0) = T, (6)

which represents the overall amount of time progression to
be allocated along the trajectory.

To assess how Euler behaves on the t-clock, we relate its
local approximation error over a step to the curvature of
the right-hand side in (4a). We proceed analogously to the
Euler discretization in (3). On an interval t ∈ [ti, ti+1) with
stepsize hi := ti+1 − ti, the Euler update uses one control
value per step; we denote this step value by θi.

Define the one-step Euler error proxy on the t-clock by

Ei := x(ti+1)−
(
x(ti) + hi θi F

(
x(ti), ψ(ti)

))
.

A Taylor expansion yields

Ei =
h2i
2
θ2i Q

(
x(ti), ψ(ti)

)
+O(h3i ), (7)

where

Q(x, ψ) = A(s, x)B(s, x)− g(s)g′(s)Ŝ(s, x)
− f ′(s)x− 1

2g(s)
2 ∂sŜ(s, x),

(8)

with s := T − ψ, A(s, x) := f(s)Id +
1
2g(s)

2∇xŜ(s, x),
and B(s, x) := f(s)x + 1

2g(s)
2Ŝ(s, x). Thus, to leading

order, the magnitude of the Euler local error on step i is pro-
portional to θ2i |Q(x(ti), ψ(ti))|, where | · | denotes the Eu-
clidean norm throughout. In implementation,∇xŜ(s, x) is

never formed explicitly; it is only queried through Jacobian–
vector product computed by automatic differentiation.

This motivates using |Q(x, ψ)| θ(t)2 as an error-density sur-
rogate for allocating the time-warping rate. With a fixed
time budget, we choose θ = θ(·) to minimize the overall
residual surrogate subject to the constraint

∫ T
0
θ(t) dt = T ,

enforced via a Lagrange multiplier γ ∈ R. The resulting
objective is to maximize

Jθ(s, y, ϕ) = E
[ ∫ T

s

(
−|Q(x(t), ψ(t))|θ2(t)

− γθ(t)
)
dt+ γT

∣∣∣ x(s) = y, ψ(s) = ϕ
]
.

(9)

Denote the optimal value function to be

V (s, y, ϕ) = max
θ=θ(·)

Jθ(s, y, ϕ). (10)

In summary, ART recasts timestep allocation as continuous-
time control of the time-warping rate θ under (4) and
(9). The next section develops an RL-based procedure
(ART–RL) to learn θ in a data-driven way.

3. Randomized Control and RL Formulation
The ART problem just formulated has no closed-form so-
lution, not is its Hamilton–Jacobi–Bellman (HJB) equation
on a high-dimensional state space in x ∈ Rd numerically
intractable due to the curse of dimensionality. We instead
resort to an RL-based solution by considering a random-
ized version of the problem in which θ is generated by a
stochastic policy. Unlike most RL work, the randomization
here is not for exploration; rather it is a technical device
that embeds the underlying optimal control problem into
the continuous-time RL framework that has been well de-
veloped recently in both theory and algorithms. We call this
approach Adaptive Reparameterized Time via Reinforce-
ment Learning (ART-RL), and present it in this section.

3.1. ART-RL: Auxiliary Problem with Gaussian Policies

We model control randomization with a stochastic policy
that, for each triple (t, x, ψ), specifies a probability distri-
bution of the time warping rate θ. Inspired by the entropy-
regularized formulation in the discrete-time setting (Ziebart
et al., 2008) and its continuous-time counterpart (Huang
et al., 2022), where Gaussian policies are optimal, we con-
sider the Gaussian family indexed by λ ≥ 0:

π(λ)(· | t, x, ψ) = N
(
µ(t, x, ψ),

λ

|Q(x, ψ)|

)
, (11)

where µ is a measurable deterministic policy and Q is de-
fined in (8). Let Π(λ) denote the class of policies of the form
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(11) with finite second moments. This parameterization
adapts the variance to the problem geometry: since Q(x, ψ),
as shown in (7), is proportional to the local truncation error
of the Euler-discretized probability-flow dynamics, scaling
the variance inversely with |Q| reduces randomness in stiff
regions while allowing more randomness elsewhere. The
scalar λ controls the overall noise level without affecting
the mean. For analysis we assume |Q(x, ψ)| > 0 almost
surely on compact intervals; in practice we replace |Q| by
|Q| ∨ ε for a small ε > 0.

Given a policy π(λ) ∈ Π(λ), let
(
xπ

(λ)

(t), ψπ
(λ)

(t)
)
t∈[0,T ]

denote the corresponding state process which, according to
Wang et al. (2020), satisfy

ẋπ
(λ)

(t) =

∫
R
θ F (xπ

(λ)

(t), ψπ
(λ)

(t))π
(λ)
t (θ) dθ

xπ
(λ)

(0) = x0 ∼ PT ,

ψ̇π
(λ)

(t) =

∫
R
θ π

(λ)
t (θ) dθ,

ψπ
(λ)

(0) = 0, ψπ
(λ)

(T ) = T.

(12a)

(12b)

The corresponding total-time constraint is∫ T
0

∫
R θπ

(λ)
t (θ)dθdt = T . The objective function

for the auxiliary problem is

Jπ
(λ)

(s, y, ϕ) = E
[
γT + λT +

∫ T

s

∫
R
π
(λ)
t (θ)(

−|Q(xπ
(λ)

(t), ψπ
(λ)

(t))|θ2 − γθ
)
dθ

dt
∣∣∣ xπ(λ)

(s) = y, ψπ
(λ)

(s) = ϕ
]
,

(13)

where the Lagrange multiplier γ ∈ R enforces the total-time
constraint and λ ≥ 0 is the variance parameter from (11).
The optimal value function is

V (λ)(s, y, ϕ) = max
π(λ)∈Π(λ)

Jπ
(λ)

(s, y, ϕ). (14)

3.2. Relationship between ART and ART-RL

We now establish the relationship between the ART control
problem (10) and the ART-RL auxiliary problem (14). By
dynamic programming, the optimal value function V for
(10) satisfies the HJB equation

Vt + sup
θ

{
(V ⊤
x F (x, ψ) + Vψ − γ)θ − |Q(x, ψ)|θ2

}
= 0,

(15)
with terminal condition V (T, x, ψ) = γT .

Moreover, by Wang et al. (2020), the optimal value function

V (λ) of (14) satisfies the exploratory HJB equation:

V
(λ)
t + sup

µ

{(
V (λ)⊤
x F (x, ψ) + V

(λ)
ψ − γ

)
µ

− |Q(x, ψ)|
(
µ2 +

λ

|Q(x, ψ)|

)}
= 0

(16)

with terminal condition V (λ)(T, x, ψ) = (γ + λ)T .

The connection between ART and ART-RL is characterized
by the following two theorems.

Theorem 3.1 (Value function shift). If V is a classical
solution of (15), then

V (λ)(t, x, ψ) = V (t, x, ψ) + λt (17)

is a classical solution of (16).

Theorem 3.2 (Recovery of the optimal ART control). Un-
der the conditions of Theorem 3.1, define

µ∗(t, x, ψ) =
V ⊤
x F (x, ψ) + Vψ − γ

2|Q(x, ψ)|
. (18)

Then the Gaussian policy

π(λ)∗(· | t, x, ψ) = N
(
µ∗(t, x, ψ),

λ

|Q(x, ψ)|

)
(19)

is an optimal policy for the auxiliary problem (14) subject
to the dynamics (12). Furthermore, µ∗ is an optimal policy
for the original problem (10) subject to the dynamics (4).

Proofs of Theorems 3.1 and 3.2 are provided in Appendix A.

Theorems 3.1 and 3.2 show that the ART solution can be
retrieved by solving the ART-RL problem (14). The latter
can be solved using an actor-critic scheme that does not
work directly on the original control problem (10). Specifi-
cally, the Gaussian policy class makes policy evaluation and
improvement tractable; details are given in the next section.

4. ART-RL Actor–Critic Algorithm
By Theorems 3.1 and 3.2, it suffices to solve the auxiliary
ART-RL problem in order to obtain the original ART solu-
tion.

4.1. Algorithm Design

Our algorithm builds on the continuous-time actor–critic
framework of Jia & Zhou (2022b), adapted to ART-RL with
randomized Gaussian control. We use two neural networks
NNϑc and NNϑa for the value function and policy mean,
and parameterize the value function and policy as

V̂ ϑc(t, x, ψ) = NNϑc(t, x, ψ) + λt,

π̂ϑa(· | t, x, ψ) = N
(
NNϑa(t, x, ψ),

λ

|Q(x, ψ)|

)
.

(20)
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Let θπ̂
ϑa ∼ π̂ϑa be a Gaussian control process with corre-

sponding (observable) state process (xθ
π̂ϑa

(t), ψθ
π̂ϑa

(t)).
For brevity, in (21) we write (x(t), ψ(t), θ(t)) =

(xθ
π̂ϑa

(t), ψθ
π̂ϑa

(t), θπ̂
ϑa
(t)). By Jia & Zhou (2022b),

V̂ ϑc and π̂ϑa satisfy the coupled moment conditions

E
[∫ T

0

∂NNϑc(t, x(t), ψ(t))

∂ϑc

(
dV̂ ϑc(t, x(t), ψ(t))

−
(
|Q(x(t), ψ(t))|θ(t)2 + γθ(t)

)
dt
)]

= 0,

E
[∫ T

0

(
∂ log π̂ϑa(θ(t) | t, x, ψ)

∂ϑa

)(
dV̂ ϑc(t, x(t),

ψ(t))−
(
|Q(x(t), ψ(t))|θ(t)2 + γθ(t)

)
dt
)]

= 0.

(21)
This leads to standard moment conditions in the RL liter-
ature (Sutton & Barto, 1998; Huang & Zhou, 2025). The
learnable parameters ϑc and ϑa can then be updated via
stochastic approximation, as shown in the next subsection.

4.2. Implementable ART-RL Algorithm

We index iterations by n; for instance, ϑc,n denotes the it-
erate for ϑc at iteration n. At each iteration, a trajectory
(xn, ψn, θn) is generated under the current policy π̂ϑa,n ,
and parameters are updated with learning rate an > 0. In
implementation, time is discretized on a uniform grid 0 =
t0 < t1 < · · · < tK = T with ∆t = T/K. For the n-th
iteration, write V̂ ϑc,n

k := V̂ ϑc,n(tk, xn(tk), ψn(tk)). View-
ing the moment conditions (21) as equations in (ϑc, ϑa), we
apply stochastic approximation and Riemann discretization
to obtain implementable critic and actor updates.

ϑc,n+1 ← ϑc,n + an

K−1∑
k=0

∂NNϑc,n

∂ϑc

(
tk, xn(tk), ψn(tk)

)
×[

V̂
ϑc,n

k+1 − V̂
ϑc,n

k − γn θn(tk)∆t

− |Q(xn(tk), ψn(tk))| θn(tk)2 ∆t
]
, (22a)

ϑa,n+1 ← ϑa,n + an

K−1∑
k=0

∂ log π̂
ϑa,n

tk

(
θn(tk)

)
∂ϑa

×[
V̂
ϑc,n

k+1 − V̂
ϑc,n

k − γn θn(tk)∆t

− |Q(xn(tk), ψn(tk))| θn(tk)2 ∆t
]
, (22b)

where we write π̂ϑa,n

tk
(θ) := π̂ϑa,n(θ | tk, xn(tk), ψn(tk)).

The update for the Lagrange multiplier is

γn+1 ← γn + an
(
ψn(T )− T

)
, (23)

where ψn(T ) = ψn(tK) is the terminal state on the grid.
We summarize the resulting time-discretized ART-RL actor–

critic scheme in Algorithm 1. The inner loop generates
one trajectory under the current Gaussian policy (20), and
the outer loop then updates the actor, critic, and Lagrange
multiplier via (22) and (23).

Algorithm 1 Time-discretized ART-RL Actor-Critic

for n = 1 to N do
Set k = 0, t = tk = 0, initialize (xn(t0), ψn(t0))
while t < T do

Sample control θn(tk) from the Gaussian policy (20)
Update the states by the ART dynamics (4)
Increment time: tk+1 = tk +∆t, k ← k + 1

end while
Collect trajectory {(tk, xn(tk), ψn(tk), θn(tk))}K−1

k=0

Update critic and actor parameters via (22a) and (22b)
Update the Lagrange multiplier γn+1 via (23)

end for

5. Numerical Experiments
We now evaluate ART-RL across experiments varying in
dimensionality, model capacity, and experimental protocol.
Code is provided in the supplementary material.

Datasets. We consider both synthetic and real-image set-
tings. In a one-dimensional experiment, we construct a
synthetic target distribution on R with a known score func-
tion, isolating the effect of time reparameterization from
score-estimation error. For high-dimensional image gen-
eration, we use CIFAR-10 (Krizhevsky & Hinton, 2009),
AFHQv2 (Choi et al., 2020), FFHQ (Karras et al., 2019),
and ImageNet (Russakovsky et al., 2015) under the EDM
pipeline (Karras et al., 2022).

Timestep schedules and baselines. We compare three
timestep schemes for all the experiments. The first is Uni-
form, which uses an equally spaced grid in the physical time
variable τ ∈ [0, T ] and serves as a simple baseline.

The second is EDM, the hand-crafted schedule of Karras
et al. (2022), which is widely used in diffusion models and
performs strongly on standard image benchmarks. In our
implementation, the discrete timesteps are given by

τk =
(
σ1/ρ
max +

k

K

(
σ
1/ρ
min − σ

1/ρ
max

))ρ
, k = 0, . . . ,K,

with σmin > 0, σmax > σmin, and exponent ρ > 0 (follow-
ing Karras et al. 2022, we set default ρ = 7). This can be
viewed as placing a uniform grid in the transformed coordi-
nate σ1/ρ between σ1/ρ

max and σ1/ρ
min, which corresponds to a

fixed, hand-designed time reparameterization.

The third scheme, ART-RL, is our learned schedule produced
by Algorithm 1. In the ART formulation, the control θ
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induces a time change ψ, and we place a uniform grid in the
reparameterized t-clock. When ψ(t) = t, the grid reduces
to the Uniform scheme. When ψ(t) is proportional to σ1/ρ,
with σ following the EDM noise schedule, the induced grid
coincides with the EDM schedule up to a constant rescaling.
By contrast, ART or ART-RL optimizes ψ to minimize
Euler discretization error on the reparameterized clock, and
can therefore outperform these hand-crafted schemes by
adapting to other geometries when beneficial.

Evaluation metrics. In the one-dimensional setting, we
evaluate backward sampling quality using the squared
Wasserstein distance (W2) between the empirical distribu-
tion of generated samples and the target distribution, to-
gether with the number of timesteps used by the Euler dis-
cretization of the probability flow ODE (no neural network
is involved). For the image experiments, we follow standard
practice and report the Fréchet Inception Distance (FID) as
a function of the number of function evaluations (NFEs).
In the EDM pipeline (Karras et al., 2022), the compared
methods differ only in timestep schedule; so the FID–NFE
curves isolate the effect of time grids.

5.1. One–Dimensional Example with Analytical Score

We consider a one-dimensional example where the score
function is available in closed form; so the only source of
approximation error is the timestep schedule. The forward
process starts from p0 = N (0, 1) and follows the Itô SDE
dx(t) =

√
2t dw(t) over the horizon T = 3. In this case

x(t) ∼ N (0, 1 + t2), yielding the terminal distribution
pT = N (0, 10) and the exact score S(t, x) = −x/(1+ t2).

Substituting this score into (5) and (8) gives F (x, ψ) =
−(T − ψ)x/(1 + (T − ψ)2) and Q(x, ψ) = x/(1 + (T −
ψ)2)2. This setup isolates the effect of timestep schedules
without score-estimation error.

We next examine the learned control θ. During training
of the ART-RL Algorithm 1 with K = 100 timesteps, we
record the executed θ-values along the last 10,000 backward
trajectories. For each trajectory, we normalize the realized
θ-sequence so that the induced total time change sums to T ,
removing any residual over- or under-shoot of ψ(T ). From
these normalized trajectories, we compute at each timestep
the empirical mean of θ and the interquartile range (IQR,
25–75 percentiles), shown in Figure 1.

Figure 1 shows that the mean curve of θ is smooth with an
extremely narrow IQR band. Moreover, the 99% confidence
band (Appendix B.1, Figure 3) is visually indistinguishable
from the mean. This suggests that, in this example, the
learned control θ depends only weakly on the state and can
be effectively regarded as a function of time alone; that is,
the policy collapses to an almost time-only schedule.

Figure 1. Empirical mean (solid line) and 25–75 percent interquar-
tile range (shaded region) of the learned control θ across time.

Motivated by this observation, we perform a simple dis-
tillation step in our sampling procedure by discarding the
neural-network actor and replacing it with the empirical
mean curve of θ as a fixed function of t. This distilled
schedule has two advantages.

First, distillation removes the cost of per-step policy com-
putation, including evaluating the actor network and the
state-dependent variance viaQ. Although these components
are much cheaper than the score model, repeated evaluation
along sampling trajectories still incurs nontrivial overhead.
After distillation, ART-RL sampling requires no extra com-
putation beyond standard schemes such as Uniform or EDM;
the timestep sequence is precomputed and reused.

Second, it eliminates residual mismatch in the terminal time.
While the learned actor enforces ψ(T ) ≈ T in expectation,
individual trajectories may slightly overshoot or undershoot
T when θ is produced by a neural network at every timestep.
This discrepancy is negligible for small K but becomes
more pronounced as K grows and finer time resolution
matters. By distilling to a deterministic schedule whose
increments are normalized to sum to T , we guarantee that
the induced grid hits T exactly, improving the numerical
fidelity of the discretized probability flow ODE.

In view of these advantages, we use the distilled ART-RL
schedule for sampling in all our experiments, while the
schedule is still trained by Algorithm 1. We now report the
numerical results for the one-dimensional example.

Table 1. W2 vs. timesteps K in the one-dimensional experiment.

K 2 5 10 20 50 100

Uniform .468 .215 .114 .060 .027 .016
EDM-T .414 .195 .105 .056 .025 .015
EDM .664 .319 .177 .094 .041 .023
ART-RL .345 .149 .079 .042 .020 .013

The EDM paper (Karras et al., 2022) recommends the de-
fault exponent ρ = 7 and reports strong performance on
image datasets under their sampling pipeline. However,
in this one–dimensional setting the same choice performs
poorly: Table 1 shows that EDM with ρ = 7 is significantly
worse than all the other methods across all timestep counts
and even underperforms the Uniform grid. This highlights
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an important point: although EDM provides a training-free
schedule, its effectiveness is problem dependent, and the
choice of hyperparameters can matter substantially.

For comparison, we also report an EDM variant with a
nondefault choice of ρ = 3 that yields clearly improved
performance after tuning, which we label “EDM-T”. The
tuned EDM schedule consistently outperforms Uniform,
confirming that EDM can improve sampling quality when
appropriately calibrated. But ART-RL achieves consistently
lower W2 errors than both Uniform and EDM-T, with a
substantial margin across all K. This suggests that while
EDM can be fine-tuned, such tuning incurs additional cost
and still does not match the accuracy of ART-RL, whose
schedule is learned directly from the underlying dynamics.

5.2. CIFAR–10 under the EDM Pipeline

We use the official EDM pipeline (Karras et al., 2022) and
keep all details fixed (score model, solver, noise condition-
ing, and hyperparameters). ART-RL replaces only the time
grid. Since our objective is theoretically motivated by an
Euler local error proxy, we additionally run a solver-aligned
Euler ablation as a controlled check. ART-RL improves FID
over both EDM and Uniform across all tested budgets; for
example, at NFE = 5 it attains 28.16 versus 49.10 (EDM)
and 214.60 (Uniform), and at NFE = 30 it attains 4.06
versus 4.21 (EDM) and 85.83 (Uniform); see Appendix B.2
for the full sweep.

We report the main image results with the default Heun
solver to follow the standard EDM setup and to demonstrate
that the learned time grid is not specific to Euler updates
and remains effective under higher-order solvers. Precisely,
we test K ∈ {2, 5, 7, 10, 18} steps and use Euler only for
the final step update, matching the EDM implementation
and giving NFE = 2K − 1. EDM reports its best result at
K = 18 (NFE = 35); so we report results up to K = 18 for
a budget-matched comparison.

Table 2. FID vs. NFE on CIFAR–10 under the EDM pipeline.

NFE 3 9 13 19 35

Uniform 280.29 213.13 191.69 168.87 118.02
EDM 465.83 35.54 6.79 2.54 1.85
ART-RL 152.86 32.13 5.44 2.45 1.85

The results in Table 2 show several noteworthy patterns.
First, the default EDM schedule is not uniformly strong
across budgets: at small NFE = 3, EDM performs poorly
and even worse than the simple Uniform grid, whereas ART-
RL already yields substantially improvement. From NFE =
9 onward, EDM starts to outperform Uniform significantly
and enters the high-quality regimes.

Second, ART-RL consistently attains the lowest FID among
the three schedules at all reported NFEs. The improve-
ment is most pronounced at small and moderate budgets
(NFE = 3, 9, 13), where ART-RL corrects the failure mode
of EDM at very small step counts and further improves
once EDM becomes competitive. At larger budgets (NFE
= 19, 35), the gap between ART-RL and EDM narrows,
with both achieving strong FID values and ART-RL never
underperforming EDM.

Third, the visuals in Appendix B.3, Figure 4, corroborate the
numerical results. The Uniform grid produces noticeably
blurry images even at NFE = 35, whereas both EDM and
ART-RL yield sharp samples at moderate and large budgets.
At very small budgets (e.g., NFE = 3), ART-RL already
produces recognizable objects, while EDM outputs remain
close to noise, mirroring the quantitative gaps in Table 2.

In sum, these results indicate that our learned time param-
eterization can be used as a drop-in replacement inside a
strong sampling pipeline such as EDM, substantially im-
proving robustness and sample quality in low- and mid-
computation regimes while maintaining superior perfor-
mance when more function evaluations are available.

5.3. Generalization of the ART-RL Time Schedule

We now examine how well the ART-RL time schedule trans-
fers beyond the configuration in which it was learned, both
across different timestep counts and across datasets without
retraining. In the following, we focus on EDM and ART-
RL; the Uniform grid performs substantially worse in these
settings and is omitted for clarity.

5.3.1. ROBUSTNESS ACROSS TIME GRIDS VIA
INTERPOLATION AND EXTRAPOLATION

To investigate whether ART-RL time schedules can be
robustly reused across different timestep counts, we use
CIFAR–10 as a testbed. Both methods under comparison
follow the same experimental setup as in Section 5.2. For
ART-RL, we take the learned time schedule obtained un-
der K = 18 in Section 5.2 and construct new grids for
K = 4, 6, 9, 12, 20 by log-linear interpolation and extrap-
olation. For EDM, the timestep sequence at each K is
computed directly from its analytic formula.

Table 3. FID vs. NFE on CIFAR–10 for interpolated and extrapo-
lated timestep counts.

NFE 7 11 17 23 39

EDM 85.80 14.42 3.11 2.06 1.85
ART-RL 33.73 6.59 2.57 2.00 1.85

Table 3 shows that the ART-RL schedule generalizes
smoothly to both interpolated and extrapolated timestep
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counts. Across all NFEs, ART-RL preserves the perfor-
mance hierarchy observed in Section 5.2: its FID is sub-
stantially lower than EDM at small and moderate NFEs and
remains at least as good at higher budgets, suggesting that
the schedule learned at NFE = 35 captures a stable struc-
ture that persists under these modifications. Corresponding
images are shown in Appendix B.4, Figure 5.

5.3.2. CROSS-DATASET TRANSFER: AFHQV2, FFHQ,
AND IMAGENET

We next investigate whether the ART-RL time schedule
learned on CIFAR–10 can transfer directly to other datasets
without retraining. For AFHQv2, FFHQ, and ImageNet,
we keep all implementation details in the EDM pipeline
unchanged, and replace only the timestep grid with the ART-
RL schedule trained from CIFAR-10 as in Section 5.2.

Table 4. FID vs. NFE on AFHQv2.

NFE 3 9 13 19 35

EDM 375.76 27.88 7.56 2.99 2.11
ART-RL 243.48 20.48 6.12 2.85 2.10

AFHQv2. On AFHQv2, ART-RL attains lower FID than
EDM at every NFE, with particularly large gains at small
and moderate budgets and a consistent, albeit smaller, ad-
vantage even at the highest NFEs.

Table 5. FID vs. NFE on FFHQ.

NFE 3 9 13 19 35

EDM 466.76 57.13 15.87 5.26 2.73
ART-RL 305.97 35.73 11.08 4.31 2.67

FFHQ. The FFHQ results show the same pattern, with
ART-RL improving on EDM across the entire NFE range.
The advantage is pronounced at small NFEs and remains
visible even at the largest budget (NFE = 35).

Table 6. FID vs. NFE on ImageNet.

NFE 3 9 13 19 35

EDM 437.42 35.32 8.18 3.68 2.57
ART-RL 147.21 29.49 7.01 3.62 2.57

ImageNet. On ImageNet, we observe the same qualitative
trend: ART-RL improves clearly over EDM at low and mid
NFEs, with the gains narrowing at larger budgets.

Qualitative results. We provide qualitative comparisons
for AFHQv2 and FFHQ in the appendix. For ImageNet,

(a) EDM (b) ART-RL

Figure 2. ImageNet samples under EDM and ART-RL schedules
at increasing NFEs (top to bottom).

Figure 2 shows a representative example. At NFE = 3,
ART-RL already produces partially recognizable objects,
whereas the EDM outputs remain close to noise. At NFE
= 9, ART-RL produces more coherent global structure with
a smoother appearance, while EDM is still visibly noisy. For
larger NFEs, both schedules produce high-quality images
and the visual differences are subtle, consistent with the
small FID gaps.

6. Conclusions
We introduce ART for timestep allocation in score-based dif-
fusion models, along with ART-RL, a reinforcement learn-
ing algorithm that provides a continuous-time optimal con-
trol perspective instead of ad hoc schedule design. ART
treats the time-warping rate as a learnable control and re-
distributes computation along the reverse trajectory under a
fixed time budget. ART-RL uses an auxiliary, randomized
formulation that leads to a numerically tractable actor–critic
method, yielding a theoretically grounded schedule learned
in a data-driven manner. Empirically, ART-RL improves
sample quality given a same evaluation budget, generalizes
across step counts and datasets and, once trained on CIFAR-
10, its distilled time-only schedule serves as a training-free
drop-in replacement in existing pipelines such as EDM on
AFHQv2, FFHQ, and ImageNet.

While our approach has strong empirical performance and
supporting theory, several directions await. Our analysis
focuses on probability flow ODEs, yet extending ART to
stochastic samplers may lead to different time-allocation be-
haviors. The learning objective relies on a surrogate for the
Euler local truncation error; alternative surrogates or higher-
order, solver-aware (e.g. Heun) criteria may better align the
control formulation with practical integrators. Distillation
collapses the learned policy to a time-only schedule, which
works well empirically, but it remains unclear when state
dependence matters. More broadly, adaptive time reparame-
terization for diffusion sampling is still nascent, and ART
with ART-RL offers a control-theoretic starting point for
systematic schedule design in generative diffusion models.
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A. Proofs for Theorems 3.1 and 3.2
Proof of Theorem 3.1. We start from the definition V (λ)(t, x, ψ) = V (t, x, ψ) + λt. Differentiating gives

V
(λ)
t (t, x, ψ) = Vt(t, x, ψ) + λ, V (λ)

x (t, x, ψ) = Vx(t, x, ψ), V
(λ)
ψ (t, x, ψ) = Vψ(t, x, ψ).

Next, simplify the auxiliary HJB (16). Since

−|Q(x, ψ)|
(
µ2 +

λ

|Q(x, ψ)|

)
= −|Q(x, ψ)|µ2 − λ,

equation (16) is equivalent to

V
(λ)
t + sup

µ

{(
V (λ)⊤
x F (x, ψ) + V

(λ)
ψ − γ

)
µ− |Q(x, ψ)|µ2 − λ

}
= 0. (24)

Substitute the derivatives of V (λ) into (24):

(Vt + λ) + sup
µ

{(
V ⊤
x F (x, ψ) + Vψ − γ

)
µ− |Q(x, ψ)|µ2 − λ

}
= 0.

The λ terms cancel, and we obtain

Vt + sup
µ

{(
V ⊤
x F (x, ψ) + Vψ − γ

)
µ− |Q(x, ψ)|µ2

}
= 0.

This is exactly the original HJB (15) after renaming the maximization variable from θ to µ. Therefore, if V satisfies (15),
then V (λ) satisfies (16).

Finally, check the terminal condition. Using V (T, x, ψ) = γT ,

V (λ)(T, x, ψ) = V (T, x, ψ) + λT = γT + λT = (γ + λ)T,

which matches the terminal condition of (16). Hence V (λ) is a classical solution of (16).

Proof of Theorem 3.2. We split the proof into three steps: (i) compute the maximizer of the HJB, (ii) prove a verification
inequality V (λ) ≥ Jπ(λ)

for any admissible policy, and (iii) show equality for the specific Gaussian policy π(λ)∗.

Step 1: maximizer of the quadratic Hamiltonian. Fix (t, x, ψ). Consider the function of the scalar decision variable µ:

H(µ) :=
(
V (λ)⊤
x F (x, ψ) + V

(λ)
ψ − γ

)
µ− |Q(x, ψ)|µ2.

This is a concave quadratic in µ because |Q(x, ψ)| ≥ 0. Differentiating with respect to µ and setting to zero gives

d

dµ
H(µ) = V (λ)⊤

x F (x, ψ) + V
(λ)
ψ − γ − 2|Q(x, ψ)|µ = 0,

hence the maximizer is

µ∗(t, x, ψ) =
V

(λ)⊤
x F (x, ψ) + V

(λ)
ψ − γ

2|Q(x, ψ)|
.

Using V (λ)
x = Vx and V (λ)

ψ = Vψ , we obtain (18):

µ∗(t, x, ψ) =
V ⊤
x F (x, ψ) + Vψ − γ

2|Q(x, ψ)|
.

In particular, the optimal mean control does not depend on λ.
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Step 2: Verification inequality V (λ) ≥ Jπ(λ)

for any admissible policy π(λ) ∈ Π(λ). Fix λ > 0 and fix any admissible
Gaussian policy π(λ) ∈ Π(λ). Let µπ

(λ)

(t, x, ψ) denote the mean of π(λ)(· | t, x, ψ), so that

π(λ)(· | t, x, ψ) = N
(
µπ

(λ)

(t, x, ψ),
λ

|Q(x, ψ)|

)
.

Let (xπ
(λ)

(t), ψπ
(λ)

(t)) be the state trajectory under policy π(λ). Under the exploratory formulation, the induced controlled
dynamics can be written in feedback form as

ẋπ
(λ)

(t) = µπ
(λ)

(t, xπ
(λ)

(t), ψπ
(λ)

(t))F (xπ
(λ)

(t), ψπ
(λ)

(t)), ψ̇π
(λ)

(t) = µπ
(λ)

(t, xπ
(λ)

(t), ψπ
(λ)

(t)).

Apply the chain rule to the term V (λ)(t, xπ
(λ)

(t), ψπ
(λ)

(t)):

d

dt
V (λ)(t, xπ

(λ)

(t), ψπ
(λ)

(t)) = V
(λ)
t + V (λ)⊤

x ẋπ
(λ)

(t) + V
(λ)
ψ ψ̇π

(λ)

(t).

Substituting the dynamics yields, for every t ∈ [s, T ],

d

dt
V (λ)(t, xπ

(λ)

(t), ψπ
(λ)

(t)) = V
(λ)
t +

(
V (λ)⊤
x F (xπ

(λ)

(t), ψπ
(λ)

(t)) + V
(λ)
ψ

)
µπ

(λ)

(t, xπ
(λ)

(t), ψπ
(λ)

(t)).

Integrating from s to T gives

V (λ)(T, xπ
(λ)

(T ), ψπ
(λ)

(T ))− V (λ)(s, y, ϕ)

=

∫ T

s

[
V

(λ)
t +

(
V (λ)⊤
x F (xπ

(λ)

(t), ψπ
(λ)

(t)) + V
(λ)
ψ

)
µπ

(λ)

(t, xπ
(λ)

(t), ψπ
(λ)

(t))
]
dt,

(25)

where we condition on xπ
(λ)

(s) = y and ψπ
(λ)

(s) = ϕ.

Now add the running cost of the auxiliary objective to both sides of (25):∫ T

s

(
−|Q(xπ

(λ)

(t), ψπ
(λ)

(t))| [µπ
(λ)

(t, xπ
(λ)

(t), ψπ
(λ)

(t))]2 − λ− γ µπ
(λ)

(t, xπ
(λ)

(t), ψπ
(λ)

(t))
)
dt.

We obtain the identity

V (λ)(T, xπ
(λ)

(T ), ψπ
(λ)

(T ))− V (λ)(s, y, ϕ) +

∫ T

s

(
−|Q| [µπ

(λ)

]2 − λ− γ µπ
(λ)

)
dt

=

∫ T

s

[
V

(λ)
t +

(
V (λ)⊤
x F + V

(λ)
ψ − γ

)
µπ

(λ)

− |Q| [µπ
(λ)

]2 − λ
]
dt,

(26)

where, for readability, all terms |Q|, F , V (λ)
t , V (λ)

x , V (λ)
ψ , and µπ

(λ)

inside the integral are evaluated at (t, xπ
(λ)

(t), ψπ
(λ)

(t)).

Define, for each (t, x, ψ), the scalar function

G(t, x, ψ;u) :=
(
V (λ)⊤
x F (x, ψ) + V

(λ)
ψ − γ

)
u− |Q(x, ψ)|u2 − λ.

Then the auxiliary HJB (16) is equivalent to

V
(λ)
t (t, x, ψ) + sup

u
G(t, x, ψ;u) = 0.

Therefore, for any particular choice u = µπ
(λ)

(t, x, ψ),

V
(λ)
t (t, x, ψ) + G(t, x, ψ;µπ

(λ)

(t, x, ψ)) ≤ 0.

12
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Applying this pointwise along the trajectory (xπ
(λ)

(t), ψπ
(λ)

(t)) implies that the integrand in (26) is nonpositive for all
t ∈ [s, T ], hence

V (λ)(T, xπ
(λ)

(T ), ψπ
(λ)

(T ))− V (λ)(s, y, ϕ) +

∫ T

s

(
−|Q| [µπ

(λ)

]2 − λ− γ µπ
(λ)

)
dt ≤ 0.

Rearranging and taking conditional expectation given xπ
(λ)

(s) = y, ψπ
(λ)

(s) = ϕ yields

V (λ)(s, y, ϕ) ≥ E
[∫ T

s

(
−|Q(xπ

(λ)

(t), ψπ
(λ)

(t))| [µπ
(λ)

(t, xπ
(λ)

(t), ψπ
(λ)

(t))]2 − λ− γ µπ
(λ)

(t, xπ
(λ)

(t), ψπ
(λ)

(t))
)
dt

+V (λ)(T, xπ
(λ)

(T ), ψπ
(λ)

(T ))

∣∣∣∣ xπ(λ)

(s) = y, ψπ
(λ)

(s) = ϕ

]
.

(27)
By definition of Jπ

(λ)

, the right-hand side is exactly Jπ
(λ)

(s, y, ϕ). This proves V (λ)(s, y, ϕ) ≥ Jπ
(λ)

(s, y, ϕ) for all
admissible π(λ) ∈ Π(λ).

Step 3: Achieving equality and concluding optimality. Equality in (27) holds if the policy mean µπ
(λ)

(t, x, ψ) attains the
supremum in the HJB, that is, if for every (t, x, ψ),

µπ
(λ)

(t, x, ψ) ∈ argmax
u
G(t, x, ψ;u).

Since G(t, x, ψ;u) is a concave quadratic in u, the maximizer is unique and given by

µ∗(t, x, ψ) =
V

(λ)⊤
x F (x, ψ) + V

(λ)
ψ − γ

2|Q(x, ψ)|
.

Using Theorem 3.1, we have V (λ)
x = Vx and V (λ)

ψ = Vψ , hence

µ∗(t, x, ψ) =
V ⊤
x F (x, ψ) + Vψ − γ

2|Q(x, ψ)|
.

Therefore, the Gaussian policy π(λ)∗ defined by

π(λ)∗(· | t, x, ψ) = N
(
µ∗(t, x, ψ),

λ

|Q(x, ψ)|

)
achieves equality in (27), which implies

V (λ)(s, y, ϕ) = Jπ
(λ)∗

(s, y, ϕ) = sup
π(λ)∈Π(λ)

Jπ
(λ)

(s, y, ϕ).

Hence π(λ)∗ is an optimal policy for the auxiliary problem.

Finally, since µ∗(t, x, ψ) does not depend on λ, setting λ = 0 yields the original ART control problem, and the same
verification argument shows that µ∗ is an optimal policy for (10).

B. Additional Numerical Results
B.1. Results for One–Dimensional Study

Figure 3 shows the empirical mean of the executed control θ together with the 99 percent confidence band computed from
the last 10,000 trajectories in the one–dimensional experiment. As in the main text, each trajectory is normalized so that the
induced terminal time satisfies ψ(T ) = T . The confidence band is extremely narrow and visually indistinguishable from the
mean curve, confirming that in this setting the learned control exhibits negligible variability across trajectories and can be
treated as an effectively deterministic function of time.
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Figure 3. Empirical mean of the executed control θ and its 99 percent confidence interval, based on the last 10,000 trajectories in the
one–dimensional experiment.

Table 7. CIFAR–10 sampling with Euler updates in the EDM pipeline. We compare Uniform, EDM, and ART-RL time grids across
representative step counts. Under Euler updates, NFE = K. Lower is better.

NFE 2 5 7 10 30 50 80
Uniform 280.504 214.599 194.398 174.146 85.8266 53.3991 34.9892
EDM 295.65 49.0991 27.7335 15.5683 4.21215 3.00838 2.50025
ART-RL 109.11 28.1562 23.8837 14.341 4.0591 2.94321 2.4605

B.2. CIFAR–10 Euler Ablation under the EDM Pipeline

Our training objective is theoretically motivated by an Euler local discretization error proxy; so using Euler updates is a
natural way to validate whether the learned time grid improves sampling under the same proxy. This ablation is not meant to
suggest that Euler is the preferred solver for image generation in general; rather, it serves as a controlled check that aligns
the evaluation solver with the proxy used in training.

We rerun CIFAR–10 using Euler updates within the official EDM pipeline, while keeping all other components unchanged.
Under Euler updates, each step requires one score evaluation, so the step count equals the number of function evaluations,
that is, NFE = K. We compare three time grids, Uniform, EDM, and ART-RL, across K ∈ {2, 5, 7, 10, 30, 50, 80}. As
shown by Table 7, at all tested K, ART-RL consistently outperforms both Uniform and EDM grids.

B.3. Qualitative Results for CIFAR–10

For completeness, we include additional visual results for CIFAR–10 at all NFEs considered in the main text, as shown in
Figure 4. Each panel displays a grid of samples generated under a timestep schedule (Uniform, EDM, or ART-RL). Within
each panel, the rows correspond to increasing NFEs, allowing visual inspection of how sample quality improves as more
function evaluations are used. The ART-RL samples exhibit faster refinement across NFEs, consistent with the quantitative
FID results reported in Section 5.2.
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(a) Uniform (b) EDM (c) ART-RL

Figure 4. CIFAR–10 samples across timesteps for the three schedules (Uniform, EDM, ART-RL). Each panel shows a grid where rows
correspond to increasing NFEs.

B.4. Qualitative Results for the Generalization of the ART-RL Time Schedules

This appendix provides visual samples for the experiments in Section 5.3. For the CIFAR–10 interpolation and extrapolation
study (Section 5.3.1), and for the cross-dataset transfer experiments on AFHQv2, FFHQ, and ImageNet (Section 5.3.2),
we display grids of generated images for EDM and ART-RL. Each panel shows samples at increasing NFEs across rows,
complementing the quantitative comparisons in the main text.

B.4.1. CIFAR–10: INTERPOLATED AND EXTRAPOLATED TIME GRIDS

(a) EDM (b) ART-RL

Figure 5. CIFAR–10 samples across timesteps for interpolated and extrapolated grids (EDM and ART-RL). Each panel shows a grid
where rows correspond to increasing NFEs.
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B.4.2. AFHQV2

(a) EDM (b) ART-RL

Figure 6. AFHQv2 samples across timesteps for the two schedules (EDM and ART-RL). Each panel shows a grid where rows correspond
to increasing NFEs.

B.4.3. FFHQ

(a) EDM (b) ART-RL

Figure 7. FFHQ samples across timesteps for the two schedules (EDM and ART-RL). Each panel shows a grid where rows correspond to
increasing NFEs.

C. Reproducibility and Training Overhead
• Our image experiments follow the official EDM pipeline and keep the score model, solver, noise-conditioning, and

EDM hyperparameters fixed. ART-RL replaces only the time grid. The EDM schedule uses the standard exponent
ρ = 7 in all image experiments. In the one-dimensional example, we additionally report a tuned variant with ρ = 3.

• In Algorithm 1, we discretize the new clock t on a uniform grid 0 = t0 < t1 < · · · < tK = T with ∆t = T/K. Each
RL iteration rolls out one backward trajectory under the current policy and performs one critic update and one actor
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update using the Riemann discretized moment conditions.

• The actor and critic are 3-layer MLPs with hidden width 128 and Softplus activations. For images, the networks do
not process the raw tensor x directly. Instead, x is represented by a low-dimensional feature vector computed from
quantities already evaluated along the rollout, including t, ψ.

• The Gaussian policy variance uses the parameterization in the paper,

π̂ϑa
(· | t, x, ψ) = N

(
µ(t, x, ψ),

λ

|Q(x, ψ)| ∨ ε

)
,

with λ = 10−1 and ε = 10−6.

• We run N = 5,000 iterations. We use Adam for both actor and critic with learning rate 10−4, (β1, β2) = (0.9, 0.999),
and no weight decay. The Lagrange multiplier is updated by stochastic approximation with step size 10−4.

• Computing Q(x, ψ) (Eq. (8)) requires ∇xŜ(s, x) and ∂sŜ(s, x), where s = T − ψ. In implementation, ∇xŜ(s, x) is
never formed explicitly. We obtain the required quantities through automatic differentiation using Jacobian vector
products, together with differentiation of the score output with respect to the scalar time input s. Per training step, this
adds two derivative queries, one Jacobian vector product and one time derivative query, on top of one score evaluation.

• To ensure the score model is always queried at a valid noise level, we enforce ψ(t) ∈ [0, T ], hence s = T−ψ(t) ∈ [0, T ],
along executed trajectories. In particular, we normalize the realized distilled θ sequence on each trajectory so that the
induced total time change matches the constraint

∑K−1
k=0 θ(tk)∆t = T , which removes numerical over or under shoot

of ψ.

• After distillation, sampling uses only a fixed precomputed time grid. The actor, critic, and Q(x, ψ) are not evaluated
at inference. As a result, the per step sampling runtime matches EDM and Uniform under the same solver and score
model.
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