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Abstract

We study reinforcement learning (RL) for the same class of continuous-time stochastic linear–

quadratic (LQ) control problems as in [1], where volatilities depend on both states and controls

while states are scalar-valued and there are no running control rewards, the last feature also

leading to the so-called indefinite LQ controls. We propose a model-free, data-driven exploration

mechanism that adaptively adjusts entropy regularization by the critic and policy variance by the

actor. Unlike the constant or deterministic exploration schedules employed in [1], which require

extensive tuning for implementations and ignore learning progresses during iterations, our adap-

tive exploratory approach boosts learning efficiency with minimal tuning. Despite its flexibility,

our method achieves a sublinear regret bound that matches the best-known model-free results

for this class of LQ problems, which were previously derived only with fixed exploration sched-

ules. Numerical experiments demonstrate that adaptive explorations accelerate convergence

and improve regret performance compared to the non-adaptive model-free and model-based

counterparts.

Keywords: S tochastic Indefinite Linear—Quadratic Control, Continuous-Time Reinforcement Learn-

ing, Actor, Critic, Data-Driven Exploration, Model-Free Policy Gradient, Regret Bounds.

1 Introduction

Linear–quadratic (LQ) control is a cornerstone of optimal control theory, widely applied in engi-

neering, economics, and robotics among many others due to its analytical tractability and practical
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relevance. Its theory has been extensively developed in the classical model-based setting where all

the LQ coefficients are known and given [2, 3]. Assuming the objective is to minimize the cost

functional, a key assumption in the LQ theory is that the control cost weighting matrix must be

positive definite. Intuitively, this is because if increasing the level of control is costless or even

beneficial, then the optimal control would just be infinitely large leading to an ill-posed problem.

[4] finds, however, that certain stochastic control LQ control problems with indefinite cost ma-

trices—including those associated with control—can still be well-posed if the diffusion coefficients

depend on the control variable. This seemingly surprising result actually has a simple explanation:

while benefiting from an indefinite control cost, a larger control is disadvantageous in terms of

increasing the level of uncertainty because the volatility term depends on control multiplicatively.

Therefore, one needs to carefully choose the optimal level of control, rendering a well-posed opti-

mization problem. [4] coins the term “indefinite stochastic LQ control” for such a problem, and

establishes conditions for well-posedness and solvability via newly introduced generalized Riccati

equations. Subsequent works extend the theory in several directions, including infinite-time hori-

zons [5] and connections with linear matrix inequalities [6], asymptotic properties of the Riccati

solutions [7], and semidefinite programming for numerical computations [8]. Research on indefinite

LQ controls and the related generalized Riccati equations has been active to this day; see, e.g.,

[9, 10, 11, 12].

All the research on indefinite LQ controls, and indeed most studies on stochastic controls, are

undertaken in a model-based paradigm where the system coefficients and objective/cost functionals

are fully known. In real-world applications, however, complete knowledge of model parameters is

rarely available. Many environments exhibit LQ-like structure yet key parameters in dynamics

and objectives may be partially known or entirely unknown. While one can use historical data to

estimate those model parameters as commonly done in the so-called “plug-in” approach, estimating

some of the parameters to a required accuracy may not be possible. For instance, it is statistically

impossible to estimate a stock return rate for a very small period – a phenomenon termed “mean-

blur” [13, 14]. On the other hand, objective function values can be highly sensitive to estimated

model parameters, rendering inferior performances or even complete irrelevance of model-based

solutions [15].

Given the limitations of model-based controls, particularly the challenges associated with un-

known model coefficients, reinforcement learning (RL) rises to provide a promising remedy. Simply

put, RL is stochastic control with unknown model parameters. Yet it never attempts to estimate
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any model coefficients, and solves the problem in a fundamentally different way compared to the

classical, model-based stochastic control. A centerpiece of RL is exploration, with which the agent

interacts with the unknown environment and improves her policies. The simplest exploration strat-

egy is perhaps the so-called ϵ-greedy for bandits problem [16]. More sophisticated and efficient

exploration strategies include intrinsic motivation methods that reward exploring novel or unpre-

dictable states [17, 18, 19, 20, 21, 22, 23], count-based exploration that encourages the agent to

explore less frequently visited states [24, 25], go-explore that explicitly stores and revisits promising

past states to enhance sample efficiency [26, 27], imitation-based exploration which leverages expert

demonstrations [28], and safe exploration methods that rely on predefined safety constraints or risk

models [29, 30]. While these methods are shown to be successful in their respective contexts, they

are all for discrete-time problems and seem difficult to be extended to the continuous-time coun-

terparts. However, most real-life applications are inherently continuous-time with continuous state

spaces and possibly continuous control spaces (e.g., autonomous driving, robot navigation, and

video game playing). On the other hand, transforming a continuous-time problem into a discrete-

time one upfront by discretization has shown to be problematic when the time step size becomes

very small [31, 32, 33].

Thus, there is a pressing need for developing exploration strategies tailored to continuous-time

RL, particularly and foremost in the LQ setting, for achieving both stability and learning efficiency.

Recent works, such as [1, 34], have employed constant or deterministic exploration schedules to

regulate exploration parameters and proved to achieve sublinear regret bounds. However, these

approaches come with notable drawbacks. They require extensive manual tuning of the exploration

hyperparameters, which considerably increases computational costs, yet these tuning efforts are

typically not reflected in theoretical analyses and results including those concerning regret bounds.

Moreover, pre-determined exploration strategies lack adaptability by nature, as they do not react

to the incoming data nor to the current learning states, typically resulting in slower convergence

and increased variance from excessive exploration or premature convergence to suboptimal policies

from insufficient exploration.

This paper presents a companion research of [1]. We continue to study the same class of

stochastic LQ problems in [1], which is also of an indefinite LQ type because control is absent

in the objective functional. We develop a data-driven adaptive exploration framework for both

critic (the value functions) and actor (the control policies). Specifically, we propose an adaptive

exploration strategy that dynamically adjusts the entropy regularization parameter for the critic
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and the stochastic policy variance for the actor based on the agent’s learning progress. Moreover,

we provide theoretical guarantees by proving the almost sure convergence of both the adaptive

exploration and policy parameters, along with a sublinear regret bound of OpN
3
4 q. This bound

matches the best-known model-free result from [1], which assumes a nonzero initial state and uses

a fixed/deterministic exploration schedule, whereas we removes this assumption and learns entirely

from data. Finally, we validate our theoretical results through numerical experiments, demonstrat-

ing a faster convergence and improved regret bounds compared with a model-based benchmark

with fixed exploration. For a comparison with the previous paper [1], we design experiments with

both fixed and randomly generated model parameters. While theoretically the regret bounds in the

two papers are of the same order, the numerical experiments show that our adaptive exploration

strategy consistently outperforms and achieves lower regrets.

A distinctive advantage of the RL approach over the traditional model-based one for indefinite

LQ control is that the latter relies heavily on the generalized (or indefinite) Riccati equation,

which is a highly complex and unconventional Riccati equation. In particular, it involves a positive

definiteness constraint and may be singular due to the indefiniteness of the control weighting cost

[4]. A central task for solving indefinite LQ control problems has been to solve this equation

analytically or numerically (e.g. [6, 7, 8, 35, 36]), which remains open for the most general case in

terms of its well-posedness. However, RL does not need to involve this equation at all, in the same

way that RL gets around the HJB PDE for a general stochastic control problem.

The remainder of this paper is organized as follows. Section 2 formulates the problem. Section

3 discusses the limitations of deterministic exploration strategies and presents our data-driven

adaptive exploration mechanism. Section 4 describes the continuous-time LQ-RL algorithm with

adaptive exploration. Section 5 establishes theoretical guarantees, proving convergence properties

and regret bounds. Section 6 presents numerical experiments that validate the effectiveness of

our approach and compare it against model-free and model-based benchmarks with deterministic

exploration schedules. Finally, Section 7 concludes.

2 Problem Formulation and Preliminaries

2.1 Stochastic LQ Control: Classical Setting

We consider the same stochastic LQ control problem in [1]. The one-dimensional state process

xu “ txuptq P R : 0 ď t ď T u evolves under the multi-dimensional control process u “ tuptq P Rl :
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0 ď t ď T u according to the stochastic differential equation (SDE):

dxuptq “pAxuptq ` BJuptqqdt `

m
ÿ

j“1

pCjx
uptq ` DJ

j uptqqdW pjqptq, (1)

where A and Cj are scalars, B and Dj are l ˆ 1 vectors, and the initial condition is xup0q “ x0.

The noise process W “ tpW p1qptq, . . . ,W pmqptqqJ P Rm : 0 ď t ď T u is an m-dimensional standard

Brownian motion. We assume
řm

j“1DjD
J
j ą 0 to ensure well-posedness of the problem soon to be

formulated.

The objective is to find a control process u that maximizes the expected quadratic reward:

max
u

E
„

ż T

0
´
1

2
Qxuptq2dt ´

1

2
HxupT q2

ȷ

, (2)

where Q ě 0 and H ě 0 are scalar weighting parameters. Note that here we maximize the reward

functional (but with the negative signs) – instead of minimizing a cost functional as in the usual

LQ literature – to be consistent with the setting of [1]. If the model parameters A, B, Cj , Dj , Q,

and H are known, the problem has an explicit solution as in [3, Chapter 6].

2.2 Stochastic LQ Control: RL Setting

We now consider the model-free, RL version of the problem just formulated, following [37], with-

out assuming a complete knowledge of the model parameters or relying on parameter estimation.

In this case, there is no Riccati equation to solve (because its coefficients are unknown) and

no explicit solutions to compute as in [3, Chapter 6]. Instead, the RL agent randomizes controls

and considers distribution-valued control processes of the form π “ tπp¨, tq P PpRlq : 0 ď t ď T u,

where PpRlq is the set of all probability density functions over Rl. The agent employs the control

u “ tuptq P Rl : 0 ď t ď T u, where uptq P Rl is sampled from πp¨, tq at each t, to control the original

state dynamic.

According to [37], the system dynamic under a randomized control π follows the SDE:

dxπptq “ rbpxπptq, πp¨, tqqdt `

m
ÿ

j“1

rσjpx
πptq, πp¨, tqqdW pjqptq, (3)

where

rbpx, πq :“ Ax ` BJ

ż

Rl

uπpuqdu, (4)
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rσjpx, πq :“

d

ż

Rl

pCjx ` DJ
j uq2πpuqdu. (5)

To encourage exploration, an entropy term is added to the objective function. The entropy-

regularized value function associated with a given policy π is defined as

Jpt, x;πq “ E
„

ż T

t

ˆ

´
1

2
Qpxπpsqq2 ` γpπpsq

˙

ds ´
1

2
HpxπpT qq2

ˇ

ˇ

ˇ
xπptq “ x

ȷ

, (6)

where pπptq “ ´
ş

Rl πpt, uq log πpt, uqdu denotes the differential entropy of π, and γ ě 0 is the so-

called temperature parameter, which represents the trade-off between exploration and exploitation.

The optimal value function is then given by V pt, xq “ maxπ Jpt, x;πq.

Applying standard stochastic control techniques, [1] derives explicitly the optimal value function

and optimal stochastic feedback policy of the above problem:

V pt, xq “ ´
1

2
k1ptqx2 ` k3ptq, (7)

πpu | t, xq “ N
´

u
ˇ

ˇ

ˇ
µ̄x,Σ

¯

, (8)

where N p¨|µ̄x,Σq represents a multivariate Gaussian distribution with mean µ̄x and covariance

matrix Σ with µ̄ “ ´

´

řm
j“1DjD

J
j

¯´1 ´

B `
řm

j“1CjDj

¯

and Σ “
γ

k1ptq p
řm

j“1DjD
J
j q´1. The

functions k1 and k3 are determined by ordinary differential equations:

k1
1ptq “ ´

„

2A ` 2BJµ̄ `

m
ÿ

j“1

ˆ

DJ
j µ̄µ̄

JDj ` 2CjD
J
j µ̄ ` C2

j

˙ȷ

k1ptq ´ Q, k1pT q “ H,

k1
3ptq “

k1ptq

2

m
ÿ

j“1

DJ
j ΣDj ´

γ

2
log

ˆ

p2πeql detpΣq

˙

, k3pT q “ 0.

(9)

It is clear from (9) that k1ptq ą 0 is independent of γ, and k1, k3 along with their derivatives

are uniformly bounded over r0, T s.

We stress that the above are theoretical results that cannot be used to compute the optimal

solutions because none of the parameters in the expressions is known; yet they offer valuable struc-

tural insights for developing the LQ-RL algorithms. Specifically, the optimal value function (critic)

is quadratic in the state variable x, while the optimal (randomized) feedback control policy (actor)

follows a Gaussian distribution, with its mean exhibiting a linear relationship with x. This intrinsic

structure will play a pivotal role in reducing the complexity of function parameterization/approxi-
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mation in our subsequent learning procedure.

2.3 Exploration in LQ-RL: Actor and Critic Perspectives

In our RL formulation above, both the actor and the critic engage in controls of exploration.

The actor does this through the variance in the Gaussian policy (8), which represents the level

of additional randomness injected into the interactions with the environment. The critic, on the

other hand, regulates exploration via the entropy-regularized objective (6), where the temperature

parameter γ determines, if indirectly, the extent of exploration. Managing exploration properly is

both important and challenging: excessive exploration can cause instability and hinder convergence,

and insufficient exploration may prevent effective policy improvement. The next section introduces

a data-driven adaptive exploration strategy designed to address these challenges and optimize policy

learning.

3 Data-driven Exploration Strategy for LQ-RL

This section presents the core contribution of this work: data-driven explorations by both the

actor and the critic.

3.1 Limitations of Deterministic Exploration Strategies

A critical challenge in RL is to design exploration strategies that are both effective and efficient.

In the setting of continuous-time LQ, existing methods [1, 34] employ non-adaptive strategies by

setting exploration levels of both actors and critics either as fixed constants or some deterministic

schedules of time. While these strategies are proved to have theoretical guarantees, they exhibit

several essential limitations in learning efficiency and practical implementations.

One major limitation of deterministic explorations lies in their arbitrary nature. Whether fixed

as a constant or a predefined sequence, such a schedule often requires extensive manual tuning in

actual implementations. The tuning process in turn may introduce significant computational and

time costs for learning; yet these costs are rarely incorporated into theoretical analyses, creating a

disconnect between theoretical guarantees and practical performance.

Another drawback of deterministic explorations is their lack of adaptability, as they follow

fixed exploration trajectories regardless of the current states of the iterates, often leading to both

excessive and insufficient explorations. While maintaining a constant exploration level is clearly
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ineffective, a deterministic schedule also suffers from a fundamental limitation: it adjusts the

exploration parameter in a predetermined direction. Consequently, when the current exploration

level is either too high or too low, the fixed schedule not only fails to correct this but may indeed

exacerbate the situation by moving in the wrong direction. We will illustrate this issue with the

experiments presented in Section 6.3.

To address these limitations, we propose an endogenous, data-driven approach that adaptively

updates both the actor and critic exploration parameters, which will be shown in the subsequent

sections.

3.2 Adaptive Critic Exploration

Critic Parameterization Motivated by the form of the optimal value function in (7), we pa-

rameterize the value function with learnable parameters θ P Rd and temperature parameter γ P R:

Jpt, x;θ, γq “ ´
1

2
k1pt;θqx2 ` k3pt;θ, γq, (10)

where both k1 and k3 and their derivatives are continuous. Both functions can be neural nets; e.g.

k1p¨;θq can be, for example, a positive neural network with a sigmoid activation. Furthermore,

these functions are constructed so that there are appropriate positive constants c1, c2, c3 such that

1

c2
ď k1pt;θq ď c2,

ˇ

ˇk1
1pt;θq

ˇ

ˇ ď c1,
ˇ

ˇk1
3pt;θ, γq

ˇ

ˇ ď c3, (11)

for all 0 ď t ď T , |θ| ď cpθq, and |γ| ď cpγq, where cpθq ą 0 and cpγq ą 0 are (fixed) hyperparameters.

The values of c1, c2, c3 are determined by the specific parametric forms of k1p¨;θq and k3p¨;θ, γq,

as well as cpθq and cpγq. 1 The boundedness assumptions (11) follow from the fact that when the

model parameters are known, the corresponding functions satisfy the same conditions, as shown in

Section 2.2.

In what follows, we introduce the subscript n to denote values at the n-th iteration. For

instance, γn represents the updated value of γ at iteration n, which evolves dynamically as learning

progresses.

1The values of c1, c2, c3, c
pθq, cpγq do not affect the order of regret bound, which will be shown in the subsequent

sections. The key consideration here is the boundedness of k1, k
1
1 and k1

3.
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Data-Driven Temperature Parameter The temperature parameter γ plays a crucial role in

RL in controlling the weight on the entropy-regularized term in the objective function (6). It

governs the level of exploration by the critic for the purpose of balancing between exploration and

exploitation.

In the related literature, γ has been either taken as an exogenous constant hyperparameter

([38, 1]) or a deterministic sequence of n ([34]), which in turn requires extensive tunings in imple-

mentations. By contrast, we derive an adaptive temperature schedule, which is endogenous and

data-driven, adjusted dynamically over iterations. Specifically, the adaptive update of γn is de-

termined by the values of the random processes θn and a predefined deterministic sequence bn as

follows

γn “
cγ

şT
0 k1pt;θnqdt

bnT
, for n “ 0, 1, 2, . . . . (12)

where cγ is a sufficiently large constant ensuring 1
cγ

is smaller than the minimum eigenvalue of

p
řm

j“1DjD
J
j q´1, and bn is a monotonically increasing sequence satisfying bn Ò 8 to be specified

shortly. As will become clear in the subsequent sections, this updating rule is chosen to ensure

convergence and achieve the desired sublinear regret bounds.

Incidentally, it follows from (11) that

γn “
cγ

şT
0 k1pt;θnq dt

bnT
ď

cγc2
bn

Ñ 0 (13)

as n Ñ `8.

3.3 Adaptive Actor Exploration

Actor Parameterization Motivated by the structure of the optimal policy in (8), we parame-

terize the actor using learnable parameters ϕ P Rl and Γ P Sl``:

πpu | x;ϕ,Γq “ N pu | ϕx,Γq. (14)

We write the corresponding entropy as pπptq “ ppt;ϕ,Γq.

Adaptive Actor Exploration The variance parameter Γ represents the level of exploration

controlled by the actor. A higher variance encourages broader exploration, allowing the agent
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to sample diverse actions, while a lower variance focuses more on exploitation. In the existing

literature ([1, 34]), Γn is chosen to be a deterministic sequence of n. Such a predetermined schedule

does not account for the agent’s experience and observed data. Introducing an adaptive Γn enables

a more flexible and efficient exploration strategy.

To achieve this, we employ the general policy gradient approach developed in [39], which pro-

vides a foundation for updating Γ in a fully data-driven manner. It leads to the following moment

condition:

E
„

ż T

0

"

B log π

BΓ
puptq | xptq;ϕ,Γq pdJpt, xptq;θ, γq ´

1

2
Qxptq2dt ` γppt;ϕ,Γqdtq ` γ

Bp

BΓ
pt;ϕ,Γqdt

*ȷ

“ 0.

(15)

To enhance numerical efficiency in the resulting stochastic approximation algorithm, we reparametrize

Γ as Γ´1. The chain rule implies that the derivative of Γ´1 with respect to Γ is a deterministic and

time-invariant term, which can thus be omitted while preserving the validity of (15). Consequently,

E
„

ż T

0

"

B log π

BΓ´1
puptq | xptq;ϕ,Γq pdJpt, xptq;θ, γq

´
1

2
Qxptq2dt ` γppt;ϕ,Γqdtq ` γ

Bp

BΓ´1
pt;ϕ,Γqdt

*ȷ

“ 0.

The corresponding stochastic approximation algorithm then gives rise to the updating rule for

the actor exploration parameter Γ:

Γn`1 Ð Γn ´ apΓq
n ZnpT q, (16)

where a
pΓq
n is the learning rate, and

Znpsq “

ż s

0

"

B log π

BΓ´1
punptq | t, xnptq;ϕn,Γnq

„

dJ pt, xnptq;θn, γnq ´
1

2
Qxnptq2dt

` γnp pt;ϕn,Γnq dt

ȷ

` γn
Bp

BΓ´1
pt;ϕn,Γnq dt

*

,

(17)

where 0 ď s ď T .

In sharp contrast with [1], the fact that Γn is no longer a deterministic sequence that mono-

tonically decreases to zero introduces significant analytical challenges. Specifically, the learning

rates must be carefully chosen, and the convergence and convergence rate of Γn must be carefully

analyzed to ensure the algorithm finally still achieves a sublinear regret bound. These problems,
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along with their implications for overall performance, will be discussed in the subsequent sections.

4 A Continuous-Time RL Algorithm with Data-driven Exploration

This section presents the development of continuous-time RL algorithms with data-driven ex-

ploration. We discuss the policy evaluation and policy improvement steps, followed by a projection

technique, time discretization, and the final pseudocode.

4.1 Policy Evaluation

To update the critic parameter θ, we employ policy evaluation (PE), a fundamental component

of RL that focuses on learning the value function of a given policy.

Based on the parameterizations of the value function and policy in (10) and (14) respectively,

we update θ by applying the general continuous-time PE algorithm introduced by [40] along with

stochastic approximation:

θn`1 Ð θn ` apθq
n

ż T

0

BJ

Bθ
pt, xnptq;θn, γnq

„

´
1

2
Qxnptq2dt ` dJpt, xnptq;θn, γnq ´ γnppt;ϕn,Γnqdt

ȷ

,

(18)

where a
pθq
n is the corresponding learning rate.

4.2 Policy Improvement

The remaining learnable parameter is the mean of the stochastic Gaussian policy, ϕ. We employ

policy gradient (PG) established in [39] and utilize stochastic approximation to generate the update

rule:

ϕ Ð ϕ ` apϕq
n YnpT q, (19)

where a
pϕq
n is the learning rate and

Ynpsq “

ż s

0

"

B log π

Bϕ
punptq | t, xnptq;ϕn,Γnq

„

´
1

2
Qxnptq2dt

` dJ pt, xnptq;θn, γnq ` γnp pt;ϕn,Γnqdt

ȷ

` γn
Bp

Bϕ
pt;ϕn,Γnq dt

*

,

(20)

where 0 ď s ď T .
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4.3 Projections

The parameter updates for θ, ϕ, and Γ follow stochastic approximation (SA), a foundational

method introduced by [41] and extensively studied in subsequent works [42, 43, 44]. However,

directly applying SA in our setting presents challenges such as extreme state values and unbounded

estimation errors, which can destabilize the learning process. To address these issues, we incorporate

the projection technique proposed by [45], ensuring that parameter updates remain in a bounded

region at every iteration.

Define ΠKpxq :“ argminyPK |y´x|2, the projection of a point x onto a set K. We now introduce

the projection sets for all the critic and actor parameters.

First, we define the projection sets for the critic parameter θ and the temperature parameter

γ:

Kpθq “

!

θ P Rd | |θ| ď cpθq
)

,Kpγq “

!

γ P R | |γ| ď cpγq
)

, (21)

which are employed to enforce the boundedness conditions in (11). The update rules incorporating

projection for θ and γ are modified to

θn`1 Ð ΠKpθq

ˆ

θn ` apθq
n

ż T

0

BJ

Bθ
pt, xnptq;θn, γnq

„

dJ pt, xnptq;θn, γnq ´
1

2
Qxnptq2dt ` γnp pt;ϕn, γnqdt

ȷ˙

,

(22)

γn`1 Ð ΠKpγq

ˆ

cγ
şT
0 k1pt;θnqdt

bnT

˙

. (23)

Next, we define the projection sets for the actor parameters ϕ and Γ:

Kpϕq
n “

!

ϕn P Rl
ˇ

ˇ

ˇ
|ϕn| ď cpϕq

n

)

,

KpΓq
n “

"

Γn P Sl``

ˇ

ˇ

ˇ
|Γn| ď cpΓq

n ,Γn ´
1

bn
I P Sl``

*

,
(24)

where tc
pϕq
n Ò 8u, tc

pΓq
n Ò 8u, and tbn Ò 8u are positive, monotonically increasing sequences, with

bn the same deterministic sequence in (12). The specifics of these sequences are given in Theorem

5.1. Clearly, the sequences of sets K
pϕq
n and K

pΓq
n expand over time, eventually covering the entire

spaces Rl and Sl``, respectively. This ensures that our algorithm remains model-free without

needing to have prior knowledge of the model parameters. The update rules with projection for ϕ
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and Γ are now

ϕn`1 ÐΠ
K

pϕq

n`1

ˆ

ϕn ` apϕq
n YnpT q

˙

, (25)

Γn`1 ÐΠ
K

pΓq

n`1

ˆ

Γn ´ apΓq
n ZnpT q

˙

, (26)

where YnpT q and ZnpT q are respectively determined by (20) and (17).

4.4 Discretization

While our RL framework is continuous-time in both formulation and analysis, numerical imple-

mentation requires discretization at the final stage. To facilitate this, we divide the time horizon

r0, T s into uniform intervals of size ∆tn at the n-th iteration, resulting in discretized rules:2

θn`1 Ð ΠKpθq

ˆ

θn ` apθq
n

Y

T
∆tn

´1
]

ÿ

k“0

BJ

Bθ
ptk, xnptkq;θn, γnq

„

J ptk`1, xnptk`1q;θn, γnq ´ J ptk, xnptkq;θn, γnq

´
1

2
Qxnptkq2∆tn ` γnp ptk;ϕn,Γnq∆tn

ȷ˙

,

(27)

γn`1 Ð ΠKpγq

ˆ

cγ
bnT

Y

T
∆tn

´1
]

ÿ

k“0

k1ptk;θnq∆tn

˙

. (28)

Moreover, YnpT q and ZnpT q in the update rules (25) and (26) are approximated by

ŶnpT q “

Y

T
∆tn

´1
]

ÿ

k“0

∆tn

"

B log π

Bϕ
punptkq | tk, xnptkq;ϕn,Γnq

„

pJ ptk`1, xnptk`1q;θn, γnq ´ J ptk, xnptkq;θn, γnqq
1

∆tn

´
1

2
Qxnptkq2 ` γnp ptk;ϕn,Γnq

ȷ

`γn
Bp

Bϕ
ptk;ϕn,Γnq

*

,

(29)

2Analysis on discretization errors is covered and discussed in Theorems 5.3 - 5.8, and Remark 5.10.
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ẐnpT q “

Y

T
∆tn

´1
]

ÿ

k“0

∆tn

"

B log π

BΓ´1
punptkq | tk, xnptkq;ϕn,Γnq

„

pJ ptk`1, xnptk`1q;θn, γnq ´ J ptk, xnptkq;θn, γnqq
1

∆tn

´
1

2
Qxnptkq2 ` γnp ptk;ϕn,Γnq

ȷ

`γn
Bp

BΓ´1
ptk;ϕn,Γnq

*

.

(30)

4.5 LQ-RL Algorithm Featuring Data-Driven Exploration

The preceding analysis gives rise to the following RL algorithm that integrates adaptive explo-

ration:

Algorithm 1 Data-driven Exploration LQ-RL Algorithm

Input: Initial values of learnable parameters θ0,ϕ0, γ0,Γ0

for n “ 0 to N do

Initialize k “ 0, time t “ tk “ 0, and state xnptkq “ x0.

while t ă T do

Sample action unptkq from policy by (Eq. (14)).

Uupdate state xnptk`1q by LQ dynamics (Eq. (1)).

Update time: tk`1 Ð tk ` ∆t, and set t Ð tk`1.

end while

Collect trajectory data: tptk, xnptkq, unptkqqukě0.

Update value function parameters θn`1 by (Eq. (27)).

Update policy mean parameters ϕn`1 by (Eq. (29)).

Update critic exploration parameter γn`1 by (Eq. (28)).

Update actor exploration parameter Γn`1 by (Eq. (30)).

end for

Output: Final parameters θN ,ϕN , γN ,ΓN .

5 Regret Analysis

This section contains the main contribution of this work: establishing a sublinear regret bound

for the LQ-RL algorithm with data-driven exploration, presented in Algorithm 1. We prove that the

algorithm achieves a regret bound of OpN
3
4 q (up to a logarithmic factor), matching the best-known

14



model-free bound for this class of continuous-time LQ problems as reported in [1].

To quickly recap the major differences from [1]: 1) the actor exploration parameter Γn therein is

a deterministic monotonically decreasing sequence of n while we apply policy gradient for updating

Γn; 2) the static temperature parameter γ is used in [1], whereas in our algorithm γ is adaptively

updated; 3) [1] only considers the case when the initial state is nonzero (x0 ‰ 0), and our analysis

removes this assumption.

In the remainder of the paper, we use c (and its variants) to denote generic positive constants.

These constants depend solely on the model parameters A,B,Cj , Dj , Q,H, x0, T, γ,m, l, and their

values may vary from one instance to another.

5.1 Convergence Analysis on γn and Γn

To start, we explore the almost sure convergence of the critic and actor exploration parameters

γn and Γn, together with the convergence rate of Γn in terms of the mean-squared error (MSE).

Theorem 5.1. Consider Algorithm 1 with fixed positive hyperparameters c1, c2, c3 and a sufficiently

large fixed constant cγ. Define the sequences:

apΓq
n “ apϕq

n “
α

3
4

pn ` βq
3
4

, bn “ 1 _
pn ` βq

1
4

α
1
4

,

cpϕq
n “ 1 _ plog lognq

1
6 , cpΓq

n “ 1 _ log n,∆tn “ T pn ` 1q´ 5
8 ,

where α ą 0 and β ą 0 are constants. Then, the following results hold:

(a) As n Ñ 8, γn converges almost surely to 0, and Γn converges almost surely to the zero matrix

0.

(b) For all n, Er|Γn|2s ď c plognqp2 plog lognq
4
3

n
1
2

, where c and p2 are positive constants.

These results guarantee that the adaptive exploration parameters γn and Γn diminish almost

surely, and the convergence rate of Γn is essential for the proof of the regret bound. The remainder

of this subsection is devoted to the proof of Theorem 5.1.

Define the conditional expectation of ZnpT q given the current parameter iterates as

hpΓqpϕn,Γn;θn, γnq “ ErZnpT q | θn,ϕn, γn,Γns,

15



as well as the deviation

ξpΓq
n “ ZnpT q ´ hpΓqpϕn,Γn;θn, γnq.

The update rule (26) can be rewritten as

Γn`1 “ Π
K

pΓq

n`1

´

Γn ´ apΓq
n rhpΓqpϕn,Γn;θn, γnq ` ξpΓq

n s

¯

. (31)

For reader’s convenience, we break the proof of Theorem 5.1 into several steps, most of which

adapt the general stochastic approximation methodology (e.g., [45] and [46]) to the specific setting

here.

5.1.1 A Variance Upper Bound

The following result establishes an upper bound on the variance of the increment ZnpT q.

Lemma 5.2. There exists a constant c ą 0 depending solely on the model parameters such that

Var
´

ZnpT q

ˇ

ˇ

ˇ
θn,ϕn, γn,Γn

¯

ď c
`

1 ` |ϕn|8 ` |Γn|8 ` plog bnq8 ` γ8n
˘

exp tc|ϕn|4u. (32)

Proof. The proof is similar to that of [1, Lemma B.2] except that we need to account for the

estimates on Γn; so we will be brief here. It follows from (17) together with Ito’s lemma (applied

to J pt, xnptq;θn, γnq) that

dZnptq fiZp1q
n ptqdt `

m
ÿ

j“1

Zp2,jq
n ptqdW pjq

n ptq, (33)

for which we have the following estimates

Er|Zp1q
n ptq|2|θn,ϕn, γn,Γn, xnptqs ď cp1 ` |Γn|4qp1 ` xnptq4 ` |ϕn|4xnptq4 ` γ2n ` γ2nplogpdetpΓnqqq2q,

Er|Zp2,jq
n ptq|2|θn,ϕn, γn,Γn, xnptqs ď cp1 ` |Γn|3qp1 ` xnptq4 ` |ϕn|2xnptq4 ` |Γn|2xnptq4 ` |ϕn|2|Γn|2xnptq2q.

Taking expectations in the above conditional on xnptq and applying [1, Lemma B.1], we get

Er|Zp1q
n ptq|2 `

m
ÿ

j“1

|Zp2,jq
n ptq|2|θn,ϕn, γn,Γns ď c

`

1 ` |ϕn|8 ` |Γn|8 ` plog bnq8 ` γ8n
˘

exp tc|ϕn|4u.

(34)

This establishes the desired inequality.
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5.1.2 A Mean Increment

We now analyze the mean increment hpΓqpϕn,Γn;θn, γnq in the updating rule (31). Taking

integration and expectation in (33):

hpΓqpΓn;θn, γnq “
1

2

ż T

0
k1pt;θnqdtΓn

˜

ÿ

j

DjD
J
j

¸

Γn ´
γnT

2
Γn. (35)

Given that hpΓqpΓn;θn, γnq is quadratic in Γn, we apply (11) to establish the bound:

ˇ

ˇ

ˇ
hpΓqpΓn;θn, γnq

ˇ

ˇ

ˇ
ď cp1 ` |Γn|2 ` γ2nq. (36)

5.1.3 Almost Sure Convergence of γn and Γn

We now prove Part (a) of Theorem 5.1. Indeed we will present and prove a more general result

that involves a bias term β
pΓq
n “ Erξ

pΓq
n | Gns, which captures implementation errors such as the

discretization error (see Remark 5.10). When β
pΓq
n “ 0, the result simplifies to Theorem 5.1-(a).

Theorem 5.3. Assume ξ
pΓq
n satisfies E

”

ξ
pΓq
n

ˇ

ˇ

ˇ
Gn

ı

“ β
pΓq
n and

E
„

ˇ

ˇ

ˇ
ξpΓq
n ´ βpΓq

n

ˇ

ˇ

ˇ

2 ˇ

ˇ

ˇ
Gn

ȷ

ď cp1 ` |ϕn|8 ` |Γn|8 ` plog bnq8 ` γ8nq exp tc|ϕn|4u, (37)

where c ą 0 is a constant independent of n, and tGnu is the filtration generated by tθm,ϕm, γm,Γm;m “

0, 1, 2, ..., nu. Moreover, assume

piq0 ă apΓq
n ď 1 @n,

ÿ

n

apΓq
n “ 8,

ÿ

n

apΓq
n |βpΓq

n | ă 8;

piiqcpϕq
n Ò 8, cpΓq

n Ò 8, and for 0 ď q1, q2, q3, 0 ď q4 ď 4,
ÿ

papΓq
n q2pcpΓq

n qq1pcpϕq
n qq2plog bnqq3ecpc

pϕq
n qq4 ă 8;

piiiqbn ě 1, bn Ò 8,
ÿ a

pΓq
n

bn
“ 8,

ÿ

|
1

bn
´

1

bn`1
| ă 8.

(38)

Then, γn
a.s.
ÝÝÑ 0 and Γn

a.s.
ÝÝÑ 0.

Proof. It is straightforward to see that γn almost surely converges to 0. To prove the almost sure

convergence of Γn, the key idea is to establish inductive upper bounds on |Γn|2, namely to bound

|Γn`1|2 by a function of |Γn|2.
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Define the deviation term U
pΓq
n “ Γn ´ Γ˚

n, where Γ˚
n is given by:

Γ˚
n “

γnT
şT
0 k1pt;θnqdt

p

m
ÿ

j“1

DjD
J
j q´1. (39)

By the adaptive temperature parameter γn in (12), Γ˚
n can be rewritten as:

Γ˚
n “

cγ
bn

p

m
ÿ

j“1

DjD
J
j q´1, (40)

where we recall cγ ą 0 is such that 1
cγ

is smaller than the minimum eigenvalue of p
řm

j“1DjD
J
j q´1,

denoted as λminpp
řm

j“1DjD
J
j q´1q. Thus Γ˚

n ą 1
bn
I. Since bn Ò 8, Γ˚

n decreases in n, leading to the

positive matrix difference: Gn “ Γ˚
n ´ Γ˚

n`1 ą 0.

We now show the almost sure convergence of U
pΓq
n to 0. Consider sufficiently large n such that

Γ˚
n P K

pΓq

n`1. By applying the general projection inequality |ΠKpyq ´ x|2 ď |y ´ x|2, we have

E
”

|U
pΓq

n`1|2
ˇ

ˇ

ˇ
Gn

ı

ďE
”

|U pΓq
n ´ apΓq

n rhpΓqpΓn;θn, γnq ` ξpΓq
n s ` Gn|2

ˇ

ˇ

ˇ
Gn

ı

ď|U pΓq
n |2 ´ 2apΓq

n xU pΓq
n , hpΓqpΓn;θn, γnqy ` p1 ` |U pΓq

n |2qpapΓq
n |βpΓq

n | ` |Gn|q

` 4papΓq
n q2

ˆ

|hpΓqpΓn;θn, γnq|2 ` |βpΓq
n |2 ` |

Gn

a
pΓq
n

|2 ` E
„

ˇ

ˇ

ˇ
ξpΓq
n ´ βpΓq

n

ˇ

ˇ

ˇ

2 ˇ

ˇ

ˇ
Gn

ȷ˙

.

Recall that 1
bn

| ď |Γn| ď c
pΓq
n almost surely. By (21), (24), (36), and (37), we can further derive

that

E
”

|U
pΓq

n`1|2
ˇ

ˇ

ˇ
Gn

ı

ď p1 ` κpΓq
n q|U pΓq

n |2 ´ ζpΓq
n ` ηpΓq

n ,

where κ
pΓq
n “ a

pΓq
n |β

pΓq
n | ` |Gn|,

ζ
pΓq
n “ 2a

pΓq
n xU

pΓq
n , hpΓqpΓn;θn, γnqy, and

ηpΓq
n “ apΓq

n |βpΓq
n | ` |Gn| ` 4papΓq

n q2
"

cp1 ` pcpΓq
n q4q ` cp1 ` pcpϕq

n q8 ` pcpΓq
n q8 ` plog bnq8q exp tcpcpϕq

n q4u

` |βpΓq
n |2 ` |

Gn

a
pΓq
n

|2
*

.

Next, we prove that
ř

|Gn| ă 8 and
ř

|Gn|2 ă 8. By the assumption (iii) in (38) along with

(40), we obtain
8
ÿ

n“0

|Gn| “

8
ÿ

n“1

|Γ˚
n ´ Γ˚

n`1| ă c
m
ÿ

j“1

|
1

bn
´

1

bn`1
| ă 8. (41)

18



Furthermore, since bn Ò 8, n0 “ inf tn1 P N : |Gn| ă 1 for all n ě n1u ă 8. Therefore, (41)

yields
8
ÿ

n“1

|Gn|2 ă

n0´1
ÿ

n“1

|Gn|2 `

8
ÿ

n“n0

|Gn| ă 8. (42)

By the assumptions (i)-(ii) of (38), as well as (41) and (42), we know
ř

κ
pΓq
n ă 8 and

ř

η
pΓq
n ă

8. It then follows from [47, Theorem 1] that
ˇ

ˇ

ˇ
U

pΓq
n

ˇ

ˇ

ˇ

2
converges to a finite limit and

ř

ζ
pΓq
n ă 8

almost surely.

It suffices to show |U
pΓq
n | Ñ 0 almost surely. The equations (24) and (35) imply

ζpΓq
n ě

a
pΓq
n T

bnc2
λminp

m
ÿ

j“1

DjD
J
j q|U pΓq

n |2.

Now, suppose |U
pΓq
n |2 Ñ c almost surely, where 0 ă c ă 8 is a constant. Then there exists a set

Z P F with PpZq ą 0 so that for every ω P Z, there exists a measurable set Z P F with PpZq “ 1

such that, for every ω P Z, there exists a constant 0 ă δpωq ă c satisfying

|U pΓq
n |2 “ |Γn ´ Γ˚

n|2 ě c ´ δpωq ą 0 for sufficiently large n.

Thus, by the assumption (iii) of (38),

ÿ

ζpΓq
n ě

T

c2
pc ´ δpωqqλminp

m
ÿ

j“1

DjD
J
j q

ÿ a
pΓq
n

bn
“ 8.

This is a contradiction, proving that Γn
a.s.
ÝÝÑ Γ˚

n. However, Γ
˚
n converges to 0 almost surely. Hence,

Γn
a.s.
ÝÝÑ 0 as well.

Remark 5.4. A case satisfying the assumptions in (38) is when a
pΓq
n “ 1 ^ α

3
4

pn`βq
3
4

and bn “

1 _
pn`βq

1
4

α
1
4

, where constants α ą 0, β ą 0. c
pϕq
n “ 1 _ plog lognq

1
6 , c

pΓq
n “ 1 _ log n, β

pϕq
n “ 0.

This is because
ř 1

n “ 8;
ř plognqpplog lognqq

nr ă 8, for any p, q ą 0 and r ą 1; and
ř

|n´ 1
4 ´ pn `

1q´ 1
4 | ă 1

4

ř

n´ 5
4 ă 8 (by the mean–value theorem). Additionally, it is interesting to note that

the assumptions
ř a

pΓq
n
bn

“ 8 and
ř

| 1
bn

´ 1
bn`1

| ă 8 are new compared to [1]. This is due to the

implementation of data-driven exploration.
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5.1.4 Convergence Rate of Γn

We need the following lemmas.

Lemma 5.5. For any W ą 0 and any 0 ă q ă 1, there exist positive numbers α ą 1
W and

β ě maxp 1
Wα´1 ,W

2q´1
1´q α

q
1´q q such that the sequences ân “ α

n`β and an “ αq

pn`βqq
satisfy ân ď

ân`1p1 ` Wân`1q and an ď an`1p1 ` Wan`1q for all n ě 0.

Proof. First,

ân ď ân`1p1 ` Wân`1q ô n ` 1 ` β ď Wαn ` Wαβ,

the latter being true for any n when α ą 1
W ą 0, β ě 1

Wα´1 ą 0.

Next, we have

an ď an`1p1 ` Wan`1q

ôpn ` β ` 1qq ´ pn ` βqq ď Wαq

ˆ

n ` β

n ` β ` 1

˙q

.
(43)

For the latter inequality in (43), notice that the left-hand side decreases in n while the right-hand

side increases in n. So to show that this inequality is true for all n, it is sufficient to show that it

is true when n “ 0, which is pβ ` 1qq ´ βq ď Wαq βq

pβ`1qq
.

Now, for β ě 1
Wα´1 , we have β `1 ď Wαβ. On the other hand, the mean–value theorem yields

pβ ` 1qq ´ βq ď qβq´1. Hence,

W
2q´1
1´q α

q
1´q ďβ ñ pβ ` 1qq ´ βq ď Wαq βq

pβ ` 1qq
.

Lemma 5.6. Let the sequence Ĝn “ n´q ´ pn ` 1q´q ą 0 for some q ą 0. Then Ĝ2
n “ Opn´2q´2q.

Proof. We have

Ĝ2
n “

„

pn ` 1qq ´ nq

pn ` 1qqnq

ȷ2

ă

„

pn ` 1qq ´ nq

n2q

ȷ2

.

Applying the mean–value theorem to the function fpxq “ xq and noting that f 1pxq “ qxq´1 is a

decreasing function for x ą 0, we conclude

„

pn ` 1qq ´ nq

n2q

ȷ2

ă
pqnq´1q2

n4q
“ q2n´2q´2.
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The following theorem specializes to Theorem 5.1-(b) when the bias term β
pΓq
n “ 0.

Theorem 5.7. Under the same setting of Theorem 5.3, if the sequence tânu, defined as t
a

pΓq
n
bn

u,

satisfies

ân ď ân`1p1 ` wân`1q

for some sufficiently small constant w ą 0, and the sequences t
b3n
a

pΓq
n

|β
pΓq
n |2u and t

b3n|Gn|2

pa
pΓq
n q3

u are non-

decreasing in n, then there exists an increasing sequence tη̂
pΓq
n u and a constant c1 ą 0 such that

Er|Γn`1 ´ Γ˚
n`1|2s ď c1ânη̂

pΓq
n .

In particular, if the parameters bn, a
pΓq
n , c

pϕq
n , c

pΓq
n , β

pΓq
n are set as in Remark 5.4, then

Er|Γn|2s ď c
pe _ log nqp2p1 _ log lognq

4
3

n
1
2

where p2 is the same constant appearing in Theorem 5.3.

Proof. First, it follows from (24) and (35) that

xU pΓq
n , hpΓqpΓn;θn, γnqy ě

T

2bnc2
λminp

m
ÿ

j“1

DjD
J
j q|U pΓq

n |2 :“
c̃

bn
|U pΓq

n |2, (44)

where c̃ “ T
2c2

λminp
řm

j“1DjD
J
j q ą 0.

Define n1 “ inftn P N : Γ˚
n P K

pΓq

n`1u. For n ě n1, we follow a similar reasoning as in the proof

of Theorem 5.3 to get

E
”

|U
pΓq

n`1|2
ˇ

ˇ

ˇ
Gn

ı

ď p1 ´ c̃
a

pΓq
n

bn
q|U pΓq

n |2 ` 4
pa

pΓq
n q2

b2n
b2n

ˆ

|hpΓqpΓn;θn, γnq|2 ` p1 ` |
bn

2c̃a
pΓq
n

|q|βpΓq
n |2

` |
bnG

2
n

2c̃pa
pΓq
n q3

| ` |
Gn

a
pΓq
n

|2 ` E
„

ˇ

ˇ

ˇ
ξ

pΓq

n`1 ´ βpΓq
n

ˇ

ˇ

ˇ

2 ˇ

ˇ

ˇ
Gn

ȷ ˙

.

(45)

Moreover, the assumptions in (38) imply that p1 ` | bn
2c̃a

pΓq
n

|q|β
pΓq
n |2 ď cp bn

a
pΓq
n

|β
pΓq
n |2q and |Gn|2

pa
pΓq
n q2

ď

cp bn|Gn|2

pa
pΓq
n q3

q for some constant c ą 0. When n ě n1, in view of (21), (24), (36), and (37), it follows

from (45) that

E
”

|U
pΓq

n`1|2
ˇ

ˇ

ˇ
Gn

ı

ď p1 ´ c̃ânq|U pΓq
n |2 ` 4â2nη̂

pΓq
n ,
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where

η̂pΓq
n “cb2n

ˆ

1 ` pcpϕq
n q8 ` pcpΓq

n q8 ` plog bnq8 `
bn|β

pΓq
n |2

a
pΓq
n

`
bn|Gn|2

pa
pΓq
n q3

˙

exp tcpcpϕq
n q4u, (46)

which is monotonically increasing because c
pϕq
n , c

pΓq
n , bn are monotonically increasing and b3n

a
pΓq
n

|β
pΓq
n |2,

b3n|Gn|2

pa
pΓq
n q3

are non-decreasing by the assumptions. Taking expectations on both sides of the above and

denoting ρn “ Er|U
pΓq
n |2s, we get

ρn`1 ď p1 ´ c̃ânqρn ` 4â2nη̂
pΓq
n (47)

when n ě n1.

Next, we show ρn`1 ď c1ânη̂
pΓq
n for all n ě 0, where c1 “ maxt

ρ1

â0η̂
pΓq

0

, ρ2

â1η̂
pΓq

1

, ¨ ¨ ¨ ,
ρn1`1

ân1 η̂
pΓq
n1

, 4c̃ u ` 1.

Indeed, it is true when n ď n1. Assume that ρk`1 ď c1akη̂
pΓq
n is true for n1 ď k ď n ´ 1. Then (47)

yields

ρn`1 ď p1 ´ c̃ânqρn ` 4â2nη̂
pΓq
n

ď p1 ´ c̃ânqc1ân´1η̂1,n´1 ` 4â2nη̂
pΓq
n

ď p1 ´ c̃ânqc1ânp1 ` wânqη̂pΓq
n ` 4â2nη̂

pΓq
n

“ c1ânη̂
pΓq
n ` c1η̂pΓq

n â2n

ˆ

w ´ c̃ ´ c̃wân `
4

c1

˙

.

Consider the function

fpxq “ c1η̂pΓq
n x2

ˆ

w ´ c̃ ´ c̃wx `
4

c1

˙

,

which has two roots at x1,2 “ 0 and one root at x3 “
w´pc̃´ 4

c1 q

cw . Because c̃ ´ 4
c1 ą 0, we can choose

0 ă w ă c̃ ´ 4
c1 so that x3 ă 0. So fpxq ă 0 when x ą 0, leading to

c1η̂pΓq
n â2n

ˆ

w ´ c̃ ´ c̃wân `
4

c1

˙

ă 0, @n

because ân ą 0. We have now proved Er|U
pϕq

n`1|2s ď c1ânη̂
pΓq
n .

In particular, under the setting of Remark 5.4 and by Lemma 5.6, we can verify that b3n
a

pΓq
n

|β
pΓq
n |2

and b3n|Gn|2

pa
pΓq
n q3

are non-decreasing sequences of n, and ân “ Θpn´1q. Then

η̂pΓq
n ď cn

1
2 pe _ log nqp2p1 _ log log nq

4
3 , (48)
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where c and p2 are positive constants. Since n ě 1, it follows that

Er|Γn`1 ´ Γ˚
n`1|2s ď c

pe _ log nqp2p1 _ log lognq
4
3

n
1
2

ďc
pe _ logpn ` 1qqp2p1 _ log logpn ` 1qq

4
3

pn ` 1q
1
2

pn ` 1q
1
2

n
1
2

ďc
?
2

pe _ logpn ` 1qqp2p1 _ log logpn ` 1qq
4
3

pn ` 1q
1
2

.

Finally, noting that Γ˚
n converges to 0 with the rate of 1

bn
by (40), we have

Er|Γn|2s “Er|Γn ´ Γ˚
n ` Γ˚

n|2s ď Er|Γn ´ Γ˚
n|2s ` Er|Γ˚

n|2s

ďc1 pe _ log nqp2p1 _ log lognq
4
3

n
1
2

` c1 α
1
2

pn ` βq
1
2

ďc
pe _ log nqp2p1 _ log log nq

4
3

n
1
2

.

The proof is complete.

5.2 Convergence Analysis of ϕn

In this sebsection, we investigate the convergence properties of the actor parameter ϕn for both

cases x0 ‰ 0 and x0 “ 0.

Theorem 5.8. Under the same setting of Theorem 5.1, we have

(a) As n Ñ 8, ϕn converges almost surely to ϕ˚ “ ´

˜

řm
j“1DjD

J
j

¸´1˜

B `
řm

j“1CjDj

¸

.

(b) The expected squared error satisfies

Er|ϕn ´ ϕ˚|2s ď c
plog nqp1plog lognq

4
3

n
1
2

, if x0 ‰ 0,

Er|ϕn ´ ϕ˚|2s ď c
plog nqp

1
1plog lognq

4
3

n
1
4

, if x0 “ 0,

where c, p1, and p1
1 are positive constants only dependent on the model parameters.

Proof. When x0 ‰ 0, the proof is similar to that of [1, Theorem 4.1] with only minor modifications

needed. When x0 “ 0, the proof becomes more delicate as the convergence behavior of ϕ now
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depends explicitly on the actor exploration parameter Γ. Here, we highlight the differences needed.

Denoted

hpϕqpϕn,Γn;θn, γnq “ ErYnpT q | θn,ϕn, γn,Γns,

and the noise

ξpϕq
n “ YnpT q ´ hpϕqpϕn,Γn;θn, γnq.

The updating rule (25) for ϕ is now

ϕn`1 “ Π
K

pϕq

n`1
pϕn ` apϕq

n rhpϕqpϕn,Γn;θn.γnq ` ξpϕq
n sq. (49)

Similar to [1, Section B], we obtain

hpϕqpϕn,Γn;θn, γnq “ ´lpϕn,Γn;θn, γnqpϕn ´ ϕ˚q, (50)

where

lpϕn,Γn;θn, γnq “ p

m
ÿ

j“1

DjD
J
j q

ż T

0
k1pt;θnqErxnptq2sdt. (51)

When x0 ‰ 0, we have lpϕn,Γn;θn, γnq ě c̄I, where 0 ă c̄1 ă 1 is independent of Γn. The same

proof of [1, Theorem 4.1] then applies.

However, when x0 “ 0,

lpϕn,Γn;θn, γnq ě p

m
ÿ

j“1

DjD
J
j q

ż T

0

c1|Γn|t

c2
dt “

p
řm

j“1DjD
J
j qT 2c1

2c2
|Γn| ě c̄1|Γn|I. (52)

Thus l no longer admits a uniform lower bound strictly away from 0 because Γn Ñ 0. To get

around, for establishing part (a), we make use of the condition
ř a

pϕq
n
bn

“ 8, which ensures that the

argument in proving [1, Theorem B.3] remains valid. (Notice that the hyperparameters a
pϕq
n and

bn specified in Theorem 5.1 also satisfy this condition.) On the other hand, for proving part (b),

we reinterpret ân “
a

pϕq
n
bn

as the effective learning rate and follow the strategy outlined in the proof

of Theorem 5.7. This adjustment allows the analysis in [1, Appendix B.6] to be carried over to our

setting.

The established convergence of the learned policy underpins the regret analysis of Algorithm 1.

Theorem 5.8 posits that the MSE of ϕn depends on whether the initial state x0 is zero or nonzero;

yet both cases ultimately lead to the same sublinear regret bound, which will be shown in the next
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subsection.

5.3 Regret Bound

The regret quantifies the (average) difference between the value function of the learned policy

and that of the oracle optimal policy in the long run. For a stochastic Gaussian policy π “

N p¨|ϕx,Γq, we denote

J̄pϕ,Γq “ E
„

ż T

0

ˆ

´
1

2
Qxπpsq2

˙

ds ´
1

2
HxπpT q2

ˇ

ˇ

ˇ
xπp0q “ x0

ȷ

. (53)

This function evaluates policy N p¨|ϕx,Γq under the original objective without entropy regular-

ization. The oracle value of the original problem is J̄pϕ˚,0q.

Theorem 5.9. Under the same setting of Theorem 5.1, Algorithm 1 leads to the following regret

bounds over N iterations:

N
ÿ

n“1

E
“

J̄pϕ˚,0q ´ J̄pϕn,Γnq
‰

ď c ` cN
3
4 plogNq

p1`p2
2

`1plog logNq, if x0 ‰ 0,

N
ÿ

n“1

E
“

J̄pϕ˚,0q ´ J̄pϕn,Γnq
‰

ď c ` cN
3
4 plogNq

p1
1`p2
2

_pp1
1` 3

2
qplog logNq, if x0 “ 0,

where c ą 0 is a constant independent of N , and p1, p
1
1, p2 are the same constants given in Theorems

5.1 and 5.8.

Proof. Following [1, Lemma B.7, B.8], we have

J̄pϕ,Γq “ fpapϕqq ` p

m
ÿ

j“1

DJ
j ΓDjqgpapϕqq, (54)

where

apϕq “ 2A ` 2BJϕ `

m
ÿ

j“1

pC2
j ` 2CjD

J
j ϕ ` DJ

j ϕϕ
JDjq, (55)

and

fpaq “

$

’

&

’

%

x2
0p´H´QT q

2 if a “ 0,

1
2apQ ´ eaTQ ´ HeaTaqx20 if a ‰ 0,

(56)

gpaq “

$

’

&

’

%

T p´2H´QT q

4 if a “ 0,

1
2a2

pQTa ` Q ` Ha ´ eaTQ ´ HeaTaq if a ‰ 0.

(57)
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Clearly, both f and g are continuously differentiable, non-increasing, and strictly negative every-

where.

Next, we present the proofs under x0 ‰ 0 and x0 “ 0.

Case I: x0 ‰ 0. By (54), we have

J̄pϕ˚, 0q ´ J̄pϕn,Γnq “rfpapϕ˚qq ´ fpapϕnqqs ´ p

m
ÿ

j“1

DJ
j ΓnDjqgpapϕ˚qq

` p

m
ÿ

j“1

DJ
j ΓnDjqrgpapϕ˚qq ´ gpapϕnqqs.

(58)

The goal is to establish bounds for the three terms on the right-hand side of (58), adapting the

arguments of the proof of [1, Theorem 4.2] to the current setting. The first term, fpapϕ˚qq ´

fpapϕnqq, can be bounded exactly as in the proof of [1, Theorem 4.2], since it does not involve

Γn. For the second term,
´

ř

j D
J
j ΓnDj

¯

gpapϕ˚qq, and the third term,
´

ř

j D
J
j ΓnDj

¯

rgpapϕ˚qq ´

gpapϕnqqs, although Γn is now stochastic rather than deterministic, the bounds can still be derived

by utilizing part (b) of Theorem 5.1 and applying the Hölder and Cauchy–Schwarz inequalities.

These modifications allow the original argument in the proof of [1, Theorem 4.2] to follow through.

Case II: x0 “ 0. It follows from (56) that fpapϕqq “ 0 for any ϕ. Hence

J̄pϕ˚, 0q ´ J̄pϕn,Γnq “ ´p

m
ÿ

j“1

DJ
j ΓnDjqgpϕ˚q ` p

m
ÿ

j“1

DJ
j ΓnDjqpgpϕ˚q ´ gpϕnqq. (59)

The bound for the term
´

ř

j D
J
j ΓnDj

¯

gpapϕ˚qq can be derived exactly as with the second term in

Case I. Moreover, utilizing the MSE of ϕn for x0 “ 0, we can also derive the bound for the other

term, p
ř

j D
J
j ΓnDjqpgpϕ˚q ´ gpϕnqq, analogously to Case I.

Remark 5.10. Discretization errors arising from the time step size ∆tn are captured by the terms

β
pϕq
n and β

pΓq
n . Theorems 5.3 - 5.8 suggest that β

pϕq
n and β

pΓq
n should be set to decrease at the order

of n´ 3
8 , which can be achieved by setting ∆tn “ T pn ` 1q´ 5

8 . We omit the details here, but refer to

[48, 34, 1] for discussions on time-discretization analyses.
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6 Numerical Experiments

This section reports four numerical experiments to evaluate the performance of our proposed

exploratory adaptive LQ-RL algorithm. The first one validates our theoretical findings by examin-

ing the convergence behaviors of ϕ and Γ and confirming the sublinear regret bound. The second

one compares our model-free approach with a model-based benchmark ([34]) adapted to our set-

ting that incorporates state- and control-dependent volatility. The third one evaluates the effect

of exploration strategies by comparing our approach to a deterministic exploration schedule [1].

We examine scenarios where exploration parameters are either overly conservative or excessively

aggressive, demonstrating the advantages of dynamically adjusting exploration based on observed

data rather than relying on predefined schedules. The final experiment extends the third one by

introducing random model parameters and random initial exploration parameter values, capturing

real-world situations where no prior knowledge of the environment is available. This last experi-

ment further demonstrates the effectiveness of the data-driven exploration mechanism in adapting

to the environment.

For all the experiments, we set the control dimension and Brownian motion dimension to be

l “ 1 and m “ 1. Under this setting, the LQ dynamics are simplified to

dxuptq “ pAxuptq ` Buptqqdt ` pCxuptq ` DuptqqdW ptq. (60)

Moreover, we set all the model parameters A,B,C,D,Q,H, x0, and T to be 1 and use a time step

of ∆t “ 0.01 for the first three experiments. See also Appendix A for the replicability of our

experiments.

6.1 Numerical Validation of Theoretical Results

To validate the theoretical results on the convergence rates and regret bounds, we focus on the

actor parameters Γ and ϕ. We conduct 100 independent runs, each consisting of 100,000 iterations

to capture long-term behavior. Convergence rates and regret are plotted in Figure 1 using a log-log

scale, where the logarithm of the MSE (for convergence) or regret is plotted against the logarithm

of the number of iterations.

Figures 1a and 1b demonstrate that the convergence rates for Γ and ϕ are ´0.51 and ´0.52,

respectively, which closely match the theoretical results in Theorems 5.1 and 5.8 respectively.

Additionally, Figure 1c shows a regret slope of 0.73, aligning well with Theorem 5.9. Overall, these
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(a) MSE of Γ (b) MSE of ϕ

(c) Regret

Figure 1: Log-log plot of Algorithm 1.

numerical results are consistent with the theoretical analysis, confirming the long-term effectiveness

of our learning algorithm.

6.2 Model-Free vs. Model-Based

Under the same setting, we compare our model-free LQ-RL algorithm with data-driven explo-

ration to the recently developed model-based method with a deterministic exploration schedule

[34], which estimates parameters A and B in the drift term under the assumption of a constant

volatility. To cover the settings with state- and control-dependent volatilities, [1] modified the

algorithm in [34] by incorporating estimations of also C and D, which we adopt in our experiment.

Figure 2a shows that the model-based counterpart exhibits a significantly slower convergence

rate for ϕ with a slope of ´0.25. Moreover, Figure 2b indicates a worse regret with a slope of 0.84,

28



(a) MSE of ϕ in model-based algorithm (b) Regret of model-based algorithm

Figure 2: Log-log plot of model-based LQ-RL algorithm with fixed exploration schedule.

considerably larger than that of ours.3

6.3 Adaptive vs. Fixed Explorations

Now, we compare two model-free continuous-time LQ-RL algorithms: ours with data-driven

exploration (LQRL Adaptive) and the one by [1] with fixed exploration schedules (LQRL Fixed).

Both algorithms follow the same fundamental framework, with the key distinction being how ex-

ploration is carried out. In Section 3.1, we outlined several drawbacks associated with deterministic

exploration schedules. To illustrate them more concretely, we analyze two scenarios where a pre-

determined exploration is either excessive or insufficient.

For comparison, we examine the trajectories of the actor exploration parameter Γ and the

cumulative regrets over iterations.4 Both algorithms share exactly the same experimental setup,

and we conduct 1,000 independent runs to observe the overall performances.

Excessive Exploration with a Near-Optimal Policy We first consider a scenario where the

policy parameter is initialized at ϕ0 “ ´1.8, which is close to its optimal value ϕ˚ “ ´2. As the

initial policy is already nearly optimal, exploration is not highly necessary. However, the initial

exploration levels by both the critic and actor are set excessively high at γ0 “ Γ0 “ 20.

Figure 3a shows that while both algorithms start with an unnecessarily high level of Γ, LQRL Adaptive

rapidly adjusts Γ downward, having effectively learned that exploration is less needed in this set-

3Γ follows a fixed schedule in the model-based benchmark; hence its plot is uninformative and omitted.
4The temperature parameter γ is not compared, as it remains fixed in [1].
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(a) Trajectory of Γ (b) Cumulative regret

Figure 3: Comparison of exploration level and cumulative regret under excessive initial exploration.

ting. By contrast, LQRL Fixed follows a predetermined decay in Γ and remains at a consistently

higher level. As a result, Figure 3b demonstrates that LQRL Adaptive achieves lower cumula-

tive regret, indicating a more efficient learning process by dynamically adapting exploration to the

circumstances.

Insufficient Exploration with a Poor Policy We now examine an opposite scenario where ϕ0

starts at 0, relatively far away from its optimal value ϕ˚ “ ´2. The initial exploration parameters

are set too low at γ0 “ Γ0 “ 0.02, creating a situation where increased exploration is crucial for

effective learning.

(a) Trajectory of Γ (b) Cumulative regret

Figure 4: Comparison of exploration level and cumulative regret under insufficient initial explo-
ration.
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Figure 4a shows that LQRL Adaptive rapidly increases Γ from its initial low value of 0.02

to nearly 1, maintaining a higher exploration level than LQRL Fixed throughout. By contrast,

LQRL Fixed follows a predetermined decaying schedule, reducing Γ even further over iterations,

which is counterproductive in this case where greater exploration is called for. As a result, Figure

4b demonstrates an even larger performance gap in cumulative regret compared to the previous

scenario, further underscoring the benefits of adaptively adjusting exploration for learning.

6.4 Adaptive vs. Fixed Explorations: Randomized Model Parameters

In the final experiment, we evaluate the robustness of the comparison between LQRL Adaptive

and LQRL Fixed in a setting where model parameters and initial exploration levels are randomly

generated, mimicking real-world scenarios with no prior knowledge of the environment and no

pre-tuning of exploration parameters. Specifically, for each simulation run, the model parameters

A,B,C, and D are sampled from a uniform distribution Up´5, 5q, while the initial exploration

levels of γ0 and Γ0 follow Up0, 5q. The initial policy parameter is set to be ϕ0 “ 0 as a neutral

starting point. To ensure the reliability of the experiment, we conduct 10, 000 independent runs.

Figure 5: Comparison of regrets under randomized environments.

Figure 5 demonstrates that LQRL Adaptive significantly outperforms LQRL Fixed, with the

performance gap widening as the number of iterations increases.

7 Conclusions

This paper is a continuation of [1], aiming to develop a model-free continuous-time RL frame-

work for a class of indefinite stochastic LQ problems with state- and control-dependent volatilities.
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A key contribution, compared to [1], is the introduction of a data-driven exploration mechanism

that adaptively adjusts both the temperature parameter controlled by the critic and the stochastic

policy variance managed by the actor. This approach overcomes the limitations of fixed exploration

schedules, which often require extensive tuning and incur unnecessary exploration costs. While the

theoretically proved sublinear regret bound of OpN
3
4 q is the same as that in [1], numerical ex-

periments confirm that our adaptive exploration strategy significantly improves learning efficiency

compared to [1].

Research on model-free continuous-time RL is still in the very early innings. To our best

knowledge [1, 49] are the only works on regret analysis in the realm, largely because the problem

is extremely challenging. We focus on the same LQ problem in [1] because this is the problem that

we are able to solve at the moment, one nevertheless that may serve as a starting point for tackling

more complex problems. Meanwhile, it remains an interesting open question whether adaptive

exploration strategies also theoretically improve the regret bound, which is observed from our

numerical experiments. Finally, our framework relies on entropy regularization and policy variance

for exploration, which may be enhanced by goal-based constraints/rewards to improve sampling

efficiency. All these provide promising avenues for future research, driving further advancements in

data-driven exploration and continuous-time RL.

Appendix A More Details for Numerical Experiments

To ensure full replicability, we set the random seed from 1 to 100 for each independent run in

both LQRL Adaptive and the model-based benchmark in the first and second experiments. For the

third experiment comparing LQRL Adaptive and LQRL Fixed, we set the random seed from 1 to

1,000 for each independent run in both scenarios. For the fourth experiment under the randomized

environment, we set the random seed from 1 to 10,000.

The setup for our first experiment using the model-free algorithm with data-driven exploration

(LQRL Adaptive), Algorithm 1, is as follows. The initial policy mean parameter is set to ϕ0 “ ´1.1,

with the actor and critic exploration levels initialized at Γ0 “ 0.5 and γ0 “ 2, respectively. The

learning rates are specified by a
pϕq
n “ 0.05

pn`1q3{4 and a
pΓq
n “ 1

pn`1q3{4 . For computational efficiency,

the projection sets are defined as r´2.25,´1.1s for ϕn and r0, 1s for Γn. Although the projections

were originally specified for theoretical convergence guarantees, they are slightly modified in our

experiments to accelerate convergence. The projection sets for θ and γ remain unbounded. The
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deterministic sequence bn is chosen as bn “ 20maxp1, pn`1q1{4q. Additionally, we define k1pt;θq “ 1

and k3pt;θ, γq “ 0, satisfying the conditions in (11), noting that our results do not depend on the

explicit form of the value function.

The model-based benchmark is adapted from [34] and extended by [1, Algorithm A.1] to accom-

modate state- and control-dependent volatility in our setting. The initial parameter estimations are

set to be A “ B “ C “ D “ 10, resulting in the same initial ϕ0 “ ´1.1 as in LQRL Adaptive. The

initial exploration level Γ0 “ 0.5 is also matched. The deterministic exploration schedule follows

Γn “ 0.5pn ` 1q´1, consistent with [1]. Finally, the projection set for ϕn remains r´2.25,´1.1s,

aligning with the setup used in LQRL Adaptive.

For all the plots in the first and second experiments, for both our adaptive model-free algorithm

and model-based benchmarks, regression lines are fitted using data from iterations 5,000 to 100,000.

This avoids the influence of early-stage learning noise. In all the regret plots, we use the median

and exclude extreme values; similar conclusions hold when using the mean instead.

In our third experiment, comparing LQRL Adaptive and LQRL Fixed, most settings remain

identical to the first experiment, except that the bounds c
pϕq
n and c

pΓq
n are set to be 20 to accommo-

date the scenarios under consideration. For the fourth experiment, to account for potentially large

values of ϕ and Γ due to random model parameters, we further increase the bounds c
pϕq
n and c

pΓq
n

to be 100.
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